Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Herwin Suprijono
Abstrak :
Pada penelitian ini, didiskusikan mengenai metode kendali dengan menggunakan algoritma Direct Invers Control. Algoritma DIC yang digunakan berbasiskan pada Neural Networks untuk mendapatkan model identifikasi dan inverse dari plant. Untuk merancang kendali helicopter berbasis Neural Network, maka diperlukan pengumpulan data experiment penerbangan seperti data input kendali ke motor servo berupa sinyal PWM, sinyal output yaitu pitch, roll, yaw dan posisi. Untuk mendapatkan sinyal input dan output tersebut maka pada helicpoter dilengkapi dengan avionic system dan grounds station. Data penerbangan ini dikumpulkan untuk digunakan melatih dan menguji identifikasi dan kendali Neural Network. Dari hasil penelitian telah berhasil mensimulasikan kendali Neural Network DIC untuk attitude dan altitude dari helicopter. Pengembangan kendali Neural Network DIC menjadi kendali helicopter yang berbasis trajectory. Kendali berbasis trajectory ini terdiri dari dua bagian yaitu Outer Loop dan Inner Loop. Dari hasil simulasi, kendali ini dapat mengikuti trajectory dengan baik baik dengan data yang terkondisi maupun dengan data real.
In this study, we discussed the control method using Direct Invers Control algorithm. The DIC algorithm used is based on Neural Networks to obtain the identification and inverse model of the plant. To design a helicopter control based on Neural Network, it is necessary to collect flight experiment data such as control input data to servo motor in the form of PWM signal, output signal including pitch, roll, yaw and position. To get the input and output signals then the helicpoter equipped with avionic system and grounds station. This flight data is collected for use in training and testing the identification and control of Neural Network. From the research results have been successfully simulate the control of Neural Network DIC for the attitude and altitude of the helicopter. The development of Neural Network DIC controls into trajectory based helicopter control. Trajectory based control consists of two parts namely the Outer Loop and Inner Loop. From the simulation results, this control can follow trajectory well with both conditioned data and real data.
Universitas Indonesia, 2017
D2274
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dede Sutarya
Abstrak :
Dalam rangka meningkatkan keselamatan operasi tungku sintering DEGUSSA saat ini, dibutuhkan sistem monitoring cerdas sebagai bagian dari sistem manajemen keselamatan proaktif. Penelitian ini mengembangkan pendekatan deteksi kesalahan berbasis model untuk real time monitoring proses sintering pelet UO2 dalam atmosfir hidrogen. Hal ini dapat membantu sistem sintering untuk mendeteksi tanda-tanda awal degradasi tingkat keselamatan dan mengambil tindakan yang sesuai terhadap bahaya yang mungkin disebabkan. Sebuah model multi sistem inferensi neuro-fuzzy adaptif (MANFIS) digunakan untuk pembangkitan residual, sedangkan untuk evaluasi residu digunakan nilai ambang batas keselamatan hidrogen untuk proses sintering. Model MANFIS dilatih dengan data operasional rutin proses sintering dan digunakan untuk menghasilkan residu pada langkah deteksi kesalahan. Data operasinal rutin diperoleh dari proses sintering terhadap pelet UO2 yang telah diklasifikasi. Data proses real yang mengandung kesalahan dan data simulasi kesalahan proses digunakan untuk menguji model. Hasil pelatihan terhadap model dengan data operasi normal untuk parameter temperatur hidrogen telah diperoleh dengan nilai RMSE, MAE dan R2 adalah 0.0141, 0.1035 dan 0.9980, sedangkan pada tahap pengujian model nilai RMSE, MAE dan R2 yang diperoleh adalah 0.0565, 0.3781 dan 0.9897. Sementara itu untuk parameter laju alir hidrogen nilai RMSE, MAE dan R2 yang diperoleh pada tahap pelatihan adalah 0.0193, 0.7334 dan 0.9993, dan pada tahap pengujian model nilai RMSE, MAE dan R2 yang diperoleh adalah 0.0752, 0.9735 dan 0.9935. Hasil penelitian menunjukkan bahwa semua kesalahan dapat dengan jelas dideteksi dan diklasifikasikan oleh deteksi kesalahan berbasis model ini. Dengan menggunakan metode deteksi kesalahan sebagai sistem monitoring proses, sistem tungku sintering dapat langsung mendeteksi kesalahan dengan cepat, mengklasifikasikan mereka dan kemudian tindakan yang tepat dapat segera diambil.
In order to improve the current safety operation of DEGUSSA sintering furnace, intelligent monitoring system is needed as part of a proactive safety management system. This study develops a model-based fault detection approach for real time monitoring of UO2 pellets sintering process in hydrogen atmosphere. It can help sintering systems to detect early signs of safety degradation and take appropriate action with hazards that may be caused. A multi adaptive neuro-fuzzy inference system (MANFIS) model is used for residual generation, while for residual evaluation a limit threshold of hydrogen safety for sintering processes is used. The MANFIS model is trained with routine operational data collected from a sintering furnace and it used for generating residuals in the fault detection step. Routine operational data obtained from the sintering process of the UO2 pellets have been classified. The real and simulated faulty data are used for testing the model. The results of training of the model with the data of normal operation for the hydrogen temperature parameters have been obtained with a value of RMSE, MAE and R2 is 0.0141, 0.1035 and 0.9980 respectively, while the testing phase RMSE value model, MAE and R2 obtained is 0.0565, 0.3781 and 0.9897, respectively. Meanwhile, for the parameters of the hydrogen flow rate was obtained with the value of RMSE, MAE and R2 is 0.0193, 0.7334 and 0.9993, while the testing phase value model RMSE, MAE and R2 obtained is 0.0752, 0.9735 and 0.9935. The results show that all faults can be clearly detected and classified by this modelbased fault detection. By using this fault detection method of process safety monitoring systems, the sintering furnace system can immediately detect any faults quickly, classify them and then appropriate action can be taken immediately.
2014
D1987
UI - Disertasi Membership  Universitas Indonesia Library
cover
Prima Dewi Purnamasari
Abstrak :
Terdapat dua masalah besar yang diselesaikan dalam disertasi ini, yaitu masalah pemrosesan sinyal dan masalah aplikasi sinyal EEG dalam pengenalan keadaan emosi. Masalah tersebut diselesaikan dengan metode kecerdasan komputasional yang terdiri dari bagian utama, ekstraksi fitur dan klasifikasi. Pada bagian ekstraksi fitur, pada disertasi ini dibahas penggunaan metode konvensional ekstraksi fitur berbasis power spectrum yaitu dengan Discrete Wavelet Transform DWT , dan penggunaan metode baru ekstraksi fitur yang diajukan yaitu analisis bispektrum dengan filter piramida 3D, serta dengan Relative wavelet bispectrum RWB. Untuk menyelesaikan permasalahan penerapannya pada sistem otomatis pengenal emosi, maka classifier dengan jenis Artificial Neural Network ANN digunakan.Penggunaan DWT dalam metode ekstraksi fitur menunjukkan bahwa fitur Relative Wavelet Energy DWT RWE memberikan recognition rate terbaik, konsep energi relatif ini kemudian digunakan pada metode baru yang diajukan. Pada metode baru ekstraksi fitur menggunakan analisis bispektrum dengan filter piramida 3D, diketahui bahwa persentase mean bispektrum memberikan recognition rate yang terbaik dengan kompleksitas yang lebih rendah 74.22 untuk arousal dan 77.58 untuk valence. Filter non-overlap dengan ukuran alas yang bervariasi memberikan recognition rate tertinggi, khususnya secara signifikan terlihat untuk jenis emosi arousal. Penurunan jumlah channel EEG sampai dengan 8 channel dapat dilakukan untuk menurunkan biaya komputasi. Metode baru ekstraksi fitur yaitu RWB telah diajukan dalam disertasi ini dan menunjukkan pengenalan yang sangat baik mencapai 90 untuk data sinyal EEG orang alkoholik. Semakin besar lag yang digunakan dalam perhitungan korelasi, semakin tinggi recognition rate yang diperoleh. Capaian dari penelitian ini membuktikan bahwa RWB cocok untuk digunakan sebagai metode ekstraksi fitur untuk klasifikasi orang alkoholik, dan dapat dipertimbangkan untuk digunakan pada aplikasi lainnya. Dari keempat classifier yang diujikan, dari segi recognition rate, PNN sedikit lebih unggul daripada BPNN, namun uji sensitivity, specificity dan PPV serta grafik ROC menunjukkan bahwa BPNN merupakan classifier yang lebih baik dibanding PNN. Di sisi lain, waktu komputasi PNN untuk mencapai recognition rate maksimum adalah sekitar 3,5 kali lebih cepat dibanding BPNN.
There are two major problems resolved in this dissertation, which are signal processing problem and the problem in EEG signal in the application of recognizing human emotional states. The problems were solved by applying a computational intelligence method consists of two main parts, the feature extraction and the classification. In the feature extraction sub system, this study improved a conventional methods using power spectrum from discrete wavelet transform DWT, and proposed a new method for feature extraction by using bispectrum analysis with 3D pyramid flter, as well as using relative wavelet bispectrum RWB. To solve the problem in the application of EEG signal for automatic emotion recognition system, the artificial neural network ANN classifier was used.The use of DWT in the feature extraction method shows that the relative wavelet energy DWT RWE feature provides the best recognition rate, the relative energy concept was then used in the proposed new feature extraction methods. In the proposed feature extraction using bispectrum analysis with 3D pyramid filters, the mean percentage of bispectrum feature gave the best recognition rate with lower complexity i.e. 74.22 for arousal and 77.58 for valence. Non overlap filters with varied base sizes provided the highest recognition rate, and significantly seen for the arousal emotion. The selection of eight EEG channels can be conducted to lower the cost of computing. A novel feature extraction method, the RWB, showed an excellent recognition for the alcoholic person. The larger the lag used in the correlation calculation in RWB, the higher the recognition rate obtained. The achievements of this study proved that RWB is suitable as a feature extraction method for the classification of alcoholic subjects, and may be considered for use in other applications.Of the four classifiers tested, PNN is slightly superior to BPNN in terms of recognition rate however, the sensitivity, specificity and PPV tests and ROC graph shown that BPNN is a better classifier than PNN. On the other hand, the PNN computing time to reach the maximum recognition rate was about 3.5 times faster than BPNN.
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2271
UI - Disertasi Membership  Universitas Indonesia Library
cover
Karlisa Priandana
Abstrak :
ABSTRAK
Kapal termasuk dalam kategori Unmanned Surface Vehicles USV . Kendali kapal dapat dibagi menjadi tiga bagian utama, yaitu guidance system, control system, dan navigation system. Permasalahan utama pada bagian control system muncul karena lingkungan kerja USV yang dinamis, kompleks dan tidak terstruktur karena adanya gangguan seperti ombak, arus air, dan angin. Selain itu, dinamika USV sendiri pun tidak linier, time-varying dan coupled. Akibatnya, kendali berbasis model matematis menjadi terlalu kompleks. Beberapa peneliti telah mulai mengembangkan kendali kapal berbasis Neural Network NN , namun, berbagai metode yang diusulkan dalam literatur belum sepenuhnya berbasis NN. Masalah ini menjadi masalah pertama yang diselesaikan dalam disertasi. Dalam kaitannya dengan guidance system, disertasi ini membatasi masalah pada sistem kendali untuk kapal pengejar. Masalah ini menjadi masalah kedua yang diselesaikan dalam disertasi.Tujuan pertama penelitian ini adalah mengembangkan metode baru kendali berbasis supervised dan unsupervised NN untuk kapal double-propeller. Metode yang digunakan dalam pengembangan sistem kendali baru berbasis neural network adalah metode pembelajaran supervised Backpropagation Neural Networks BPNN serta metode pembelajaran unsupervised Self-Organizing Maps SOM dan Self-Organizing Incremental Neural Network SOINN . Metode SOM dan SOINN dipilih karena waktu pembelajarannya lebih cepat daripada waktu pembelajaran BPNN. Namun, SOM dan SOINN pada awalnya dikembangkan untuk image processing dan pattern recognition sehingga belum pernah digunakan untuk kendali. Pengujian sistem kendali yang dikembangkan dilakukan untuk sebuah model kapal dan purwarupa kapal berjenis double-proppeler melalui serangkaian simulasi sistem kendali, baik open-loop maupun closed-loop.Tujuan kedua penelitian ini adalah mengembangkan sistem kendali closed-loop kapal pengejar berbasis neural network menggunakan Ensemble Kalman Filter EnKF untuk memprediksi informasi radar. Sensor radar dipilih sebagai pendeteksi target karena dapat menghasilkan resolusi yang tinggi, sedangkan EnKF digunakan sebagai prediktor trayektori target dari informasi radar karena mampu meprediksi posisi target one-step ahead dan tidak memerlukan informasi state-space target. Namun, EnKF pada awalnya dikembangkan untuk prediksi cuaca sehingga belum pernah digunakan sebagai estimator trayektori pada suatu wahana pengejar.Hasil studi membuktikan bahwa metode kendali baru berbasis neural network BPNN, SOM dan SOINN yang dikembangkan berhasil digunakan sebagai kendali kapal nirawak. Simulasi yang dilakukan terhadap data asli kapal double-propeller menunjukkan bahwa kendali BPNN mampu menghasilkan error rendah, namun waktu pelatihannya lama. Masalah ini diselesaikan dengan metode kendali berbasis SOM yang memerlukan waktu pelatihan lebih singkat. Namun, kendali SOM memerlukan jumlah neuron yang optimum untuk dapat menghasilkan error yang rendah. Permasalahan ini diselesaikan dengan metode kendali berbasis algoritme pembelajaran SOINN yang dimodifikasi. Hasil simulasi menunjukkan bahwa kendali SOINN mampu menentukan jumlah neuron mapping optimum pada kendali SOM.Skema sistem kendali kapal pengejar telah dirancang menggunakan EnKF sebagai prediktor trayektori target dari data radar dan kendali closed-loop neural network. Hasil simulasi membuktikan bahwa sistem kendali closed-loop kapal pengejar berbasis neural network BPNN, SOM dan SOINN yang diusulkan telah terbukti mampu mengejar kapal target. Waktu tumbuk kapal pengejar dengan kapal target bergantung pada kecepNeural Network Controlatan maksimum kapal pengejar, di mana semakin tinggi kecepatan kapal pengejar, maka tumbukan semakin cepat terjadi. Waktu tumbuk juga bergantung pada threshold jarak tumbuk, karena semakin besar threshold jarak tumbuk, maka semakin besar kemungkinan terjadinya tumbukan. Untuk sistem kendali kapal pengejar yang dirancang, sistem kendali unsupervised SOM dan SOINN cenderung mengikuti target sedangkan sistem kendali supervised BPNN mampu memotong lintasan target. Hal ini mengindikasikan bahwa sistem kendali SOM dan SOINN cocok digunakan sebagai kendali kapal follower karena error pengendaliannya kecil dan berbasis mapping, sedangkan sistem kendali BPNN cocok digunakan sebagai kendali kapal pengejar karena prinsip kerja pengendalinya adalah minimisasi error. Dalam kasus target bermanuver dan kecepatan maksimum kapal pengejar sekitar setengah dari nilai kecepatan rata-rata kapal target, hanya sistem kendali berbasis SOINN yang mampu menumbuk kapal target.
Autonomous boats are categorized as Unmanned Surface Vehicles USVs . Its control can be divided into into three main parts, namely guidance system, control system and navigation system. The challenges of USV control system generally occur due to the highly dynamic, complex and unstructured USV environment due to the waves, water currents and wind. In addition, the USV dynamics itself are not linear, changing over time, and coupled so that the USV control design with a mathematical approach becomes too complex. Various Neural Networks NN based control systems have been developed, however, the methods proposed in literatures are not fully based on NN. This problem is the first problem addressed in this dissertation. In relation to the guidance system, this dissertation limits the problem on the control system for a chaser boat. This problem is the second problem addressed in the dissertation.The first objective of this research is to develop a new method of supervised and unsupervised NN control for a double propeller boat. The new NN based control system are developed using the supervised learning Backpropagation Neural Networks BPNN as well as the unsupervised learning Self Organizing Maps SOM and Self Organizing Incremental Neural Network SOINN methods. The SOM and SOINN methods are chosen because their learning timea are supposedly faster than that of BPNN. However, they were originally developed for image processing and pattern recognition, thus, their utilizations as control systems are not common. Justifications for these new neural network control system are conducted for a boat model and real double propeller boat prototype through a series of control system simulations, both open loop and closed loop.The second objective of this research is to develop a closed loop NN control system for a chaser boat by using Ensemble Kalman Filter EnKF as the predictor of target boat future position from radar data. Radar sensor is chosen because it is the most promising target tracking technology that can provide the highest resolution among other available options. Meanwhile, EnKF prediction method is chosen because it can perform a one step ahead prediction and does not require any state space data from the target boat. However, EnKF was originally developed for weather prediction, thus, it has never been used as a trajectory estimator on a chaser boat.The results of the study showed that the newly developed control methods based on BPNN, SOM and SOINN neural network can be utilized as the controller of an autonomous boat. The conducted simulations on real double propeller boat data have proven that BPNN controller can produce low error, but its learning process is quite timely. This problem is solved by a controller based on SOM which requires shorter computational time. However, SOM controller requires an optimum number of neurons to produce a low error. A controller trained by using a modified SOINN algorithm is developed to solve this issue. The simulation results show that SOINN controller can determine the optimum mapping neuron in SOM controller.Neural network control system for a chaser boat has been designed by using EnKF to predict the target trajectory from radar data and a closed loop neural network controller. The simulation results showed that the chaser boat closed loop control based on BPNN, SOM and SOINN can work well in chasing hitting the target boat. Time of the first hit depends on the maximum velocity of the chaser boat. As the velocity of the chaser boat gets higher, the hit occurs faster. In addition, the first hit also depends on the pre defined hitting distance threshold, as bigger threshold increases the hit probability. For the designed chaser boat control system, the unsupervised control system based on SOM and SOINN tend to follow the target, whereas the supervised control system based on BPNN can intercept the trajectory of the target. This results indicate that the SOM and SOINN controller is suitable to be used as the controller in a follower boat due to its low control error and mapping principle. Meanwhile, BPNN controller is suitable to be utilized as the controller in a chaser boat since its basic control principle is minimizing error. In the case of maneuvering target and the maximum speed of the chaser boat is about half the average velocity of the target boat, only SOINN based controller can hit the target boat.
2017
D2334
UI - Disertasi Membership  Universitas Indonesia Library
cover
M. Ary Heryanto
Abstrak :
Quadrotor adalah wahana yang memiliki empat buah rotor sebagai penggerak. Untuk dapat bergerak sempurna maka quadrotor harus dilengkapi dengan Sistem kendali yang mampu mangatur dan memberikan sinyal kendali berupa kecepatan motor keseluruh rotor.Disertasi ini membahas tentang kendali autonomous untuk quadrotor menggunakan Neural Network Direct Inverse Control NN-DIC . Tujuan dari penelitian ini adalah untuk menyelidiki kinerja Quadrotor menggunakan kontrol NN-DIC. Untuk mewujudkan penelitian ini, langkah pertama adalah untuk membangun sebuah platform Quadrotor. Karena ide dasar dari DIC adalah untuk menghilangkan efek dinamika plant dengan kendali inverse, maka langkah selanjutnya adalah membangun sebuah model NN-DIC menggunakan data penerbangan yang sebenarnya. Metode pelatihan backpropagation dipilih karena strukturnya sederhana namun mampu memberikan error yang kecil.Melalui beberapa simulasi, model kendali NN-DIC telah mampu menstabilkan quadrotor dengan performa yang sangat baik dalam mengikuti trajectory pada kondisi hover, perubahan altitude maupun manuver. Perfoma yang baik ini ditunjukan dengan nilai MSE yang kecil, yaitu 0.042 pada saat hover untuk kendali attitude, 0.340 pada saat perubahan altitude untuk kendali attitude-altitude dan terakhir nilai MSE sebesar 1.966 saat maneuver untuk kendali autonomous.
The quadrotor is an Unmanned Aerial Vehicle UAV which is included in the category of rotary wing with four rotors located at its four corners. In order to move perfectly the quadrotor must be equipped with a control system capable of controlling and providing control signals of motor speed throughout the rotors.This dissertation discusses about autonomous control for quadrotor using Neural Network Direct Inverse Control NN DIC . The purpose of this study was to investigate Quadrotor performance using NN DIC controls. To realize this research, the first step is build a Quadrotor platform. Since the basic idea of DIC is to eliminate the dynamics effect of the plant with inverse control, the next step is build an NN DIC model using actual flight data. Backpropagation training method is chosen because the structure is simple but has a small error result.Some simulations have been done, the NN DIC control model has been able to stabilize the quadrotor with excellent performance in following trajectory under hover conditions, altitude changes and maneuvers. The excellent performance is indicated from a small MSE score of 0.042 during hover on attitude control, 0.340 with altitude change on attitude altitude control and MSE of 1.966 when maneuvered on autonomous control.
Depok: Fakultas Teknik Universitas Indonesia , 2017
D2273
UI - Disertasi Membership  Universitas Indonesia Library
cover
Bhakti Yudho Suprapto
Abstrak :
ABSTRAK
Kemajuan teknologi mengiringi kemajuan UAV yang membuat peneliti terus untuk mengembangkannya. Hexacopter yang merupakan salah satu jenis UAV, saat ini telah banyak diteliti untuk berbagai kepentingan seperti pemetaan, monitoring, aerial photography dan lain-lain. Hexacopter ini memiliki enam rotor sebagai penggeraknya yang berada pada keenam sisi frame-nya. Kelebihan hexacopter ini adalah kemampuan dalam mengangkat bebn yang cukup besar, daya yang lebih besar dan safety saat ada kegagalan pada salah satu rotornya. Namun permasalahan yang timbul yakni kesulitan dalam upaya untuk mengendalikan hexacopter secara autonomous agar dapat terbang stabil terutama saat ada gangguan dan juga dengan beban yang cukup berat. Selain itu menjaga pergerakan hexacopter mengikuti trajectory juga menjadi permasalahan yang sulit apalagi sistem hexacopter ini memiliki karakteristik yang nonlinier, multi input multi output MIMO . Pada penelitian ini dirancang platform hexacopter heavy-lift yang memiliki diameter 2.4 meter, dan payload yang mampu dibawa mencapai 40 kg. Sehingga dengan platform yang besar dan berat tentunya pengendalian menjadi lebih sulitHal inilah yang menjadi topik dari penelitian ini yaitu merancang sistem kendali yang dapat menjaga pergerakan hexacopter secara autonomous mengikuti trajectory. Untuk mewujudkan tujuan tersebut, pada penelitian ini digunakan algoritma kendali Direct Inverse Control-Neural Network dengan metode Elman Recurrent Neural Network DIC-ERNN . Metode DIC-ERNN ini memiliki kelebihan mampu mengingat dan menyimpan hasil keluaran hidden layer pada contact layer sehingga terhindar dari overfitting. Kelebihan lainnya adalah algoritma ini mampu memprediksi karakteristik pada waktu didepannya t 1 . Dengan demikian pola dan karakteristik dari trajectory yang diberikan dapat diprediksi oleh pengendali ini.Berdasarkan hasil pengujian pada penelitian ini, didapatkan bahwa kendali DIC-ERNN mampu menunjukkan performa yang baik dalam mengikuti trajectory yang diberikan dengan nilai MSE yang kecil pada pengujian dengan data terbang, profile reference yang berbentuk helix serta profile reference double helix. Bila dibandingkan dengan algoritma Back Propagation Neural Network DIC-BPNN yang juga memiliki nilai MSE kecil, DIC-ERNN menunjukkan performance yang lebih baik khususnya pada saat diberikan uji impulsif fungsi doublet sebagai asumsi adanya gangguan. Pengendali DIC-ERNN menunjukkan kemampuan kembali pada kondisi steady state dengan settling time yang cepat dan tidak terdapat osilasi sedangkan pada pengendali DIC-BPNN terdapat osilasi meskipun settling time-nya juga cukup cepat.
ABSTRACT
Technological advances make researchers continue to develop UAV technology. Hexacopter is one type of UAV, has been widely researched for various interests such as mapping, monitoring, aerial photography and others. The Hexacopter has six rotors as the driving force on all six sides of the frame. The advantages of this hexacopter are the ability to lift a large enough load, greater power, and safety when there is a failure on one of its rotor. However, the problem that arises is the difficulty to control the hexacopter autonomously in order to fly stable, especially when there are disturbances and heavy loads. In addition, other difficulties are keeping the hexacopter movement following trajectory because the hexacopter system has nonlinear characteristics, and multi input multi output MIMO . In this study, designed heavy lift hexacopter platform that has a diameter of 2.4 meters, and payload weight that can carry up to 40 kg. Thus, large and heavy platforms make control more difficult.Therefore, the topic of this research is to design a control system that can keep the hexacopter movement autonomously following the trajectory. To achieve the goal, this research uses the Direct Inverse Control Neural Network control algorithm with Elman Recurrent Neural Network DIC ERNN method. This DIC ERNN method has the advantage of being able to remember and store the hidden layer output on the contact layer so that it can avoid overfitting. Another advantage is that this algorithm can predict the characteristics at the time in front of it t 1 . Thus, the pattern and characteristics of the given trajectory can be predicted by this controller.Based on the results of the tests in this study, it was found that the control of DIC ERNN was able to show good performance in following trajectory given with small MSE value in testing with flying data, reference profile in the form of helix and reference double helix profile. When compared to the Back Propagation Neural Network DIC BPNN algorithm which also has a small MSE value, DIC ERNN performs better performance, especially when given the impulsive test doublet function as an assumption of the disturbance. The DIC ERNN controller shows the ability to return to steady state conditions with fast settling time and no oscillation while on the DIC BPNN controller, there is oscillation although settling time is also quite fast.
2018
D2400
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Rifan
Abstrak :
BLDC motor telah menjadi motor yang populer karena keunggulanannya. Untuk meningkatkan kinerja BLDC telah banyak Teknik pengendalian yang dikembangkan mulai dari yang konvensional seperti PID sampai dengan yang menggunakan kecerdasan buatan. Namun demikian, sebagian besar peneliti mendesain pengendali untuk BLDC motor dengan memanfaatkan sensor kecepatan. Penelitian ini bertujuan untuk membangun pengendali yang adaptif untuk aplikasi sensorless BLDC motor dengan dua tahapan penelitian yaitu 1 Mengembangkan Adaptif PID Controller untuk BLDC dan 2 Mengembangkan Teknik sensorless BLDC dengan Neural Network Ensemble Kalman Filter. Pada Penelitian ini, telah dikembangkan pengendali Adaptif PID berbasis Model Invers Neural Network dan teknik sensorless BLDC motor menggunakan Neural Network Ensemble Kalman Filter EnKF . Pengendali Adaptif PID berbasis Model Invers Neural Network yang dikembangkan mampu bekerja lebih baik jika dibandingkan dengan pengendali PID, PID Single Neuron, dan Pengendali Single Neuron Fuzzy. Respon waktu sistem menunjukkan rise time meningkat hingga 41,1 , Settling time meningkat hingga 178,9 dan overshoot menurun hingga 825,6 . Sedangkan teknik sensorless Neural Network Ensemble Kalman Filter mampu mengestimasi posisi dan kecepatan motor BLDC hanya dengan mengukur tegangan dan arus setiap phasa baik pada kondisi kerja adanya perubahan referensi kecepatan, adanya perubahan parameter motor BLDC, maupun adanya perubahan beban/gangguan dengan tingkat kesalahan estimasi yang sangat kecil yaitu sebesar 0.7 , serta bekerja baik pada kecepatan rendah dengan jumlah member sebanyak 8.
BLDC motor has become a popular motorcycle because of its advantages. To improve the performance of BLDC has a lot of control techniques developed ranging from conventional ones such as PIDs to those using artificial intelligence. Nevertheless, most researchers design controllers for BLDC motors by utilizing speed sensors. This research aims to build adaptive controller for sensorless BLDC motor applications with two stages of research that is 1 Developing Adaptive PID Controller for BLDC and 2 Developing BLDC Sensorless Technique with Neural Network Ensemble Kalman Filter. In this research, Adaptive PID controller has been developed based on Inverse Neural Network Model and BLDC sensorless motor technique using Neural Network Ensemble Kalman Filter EnKF. The Adaptive PID controller based on the developed Inverse Neural Network model works better than the PID controller, Single Neuron PID, and Single Neuron Fuzzy Controller. The system time response shows rise time rises up to 41.1 , settling time increases up to 178.9 and overshoot decreases to 825.6. While sensural technique Neural Network Ensemble Kalman Filter able to estimate position and speed of BLDC motor only by measuring voltage and current of each phase both at work condition of change of reference of speed, change of motor parameter BLDC, or existence of change of burden / interference with very estimate error rate Small that is equal to 0.7 , and works well at low speed with the number of members as much as 8.
Depok: Universitas Indonesia, 2017
D2516
UI - Disertasi Membership  Universitas Indonesia Library
cover
Jemie Muliadi
Abstrak :
ABSTRAK
Penelitian disertasi ini mencakup analisis Sistem Kendali berbasis Neural Network NN untuk rotorcraft dan Unmanned Aerial Vehicle UAV fixed-wing. Quadrotor dan UAV fixed-wing berekor inverted-V mewakili kedua tipe UAV dengan dinamika terbangnya yang nonlinear, serta kopling-silang yang kuat dan karakteristik under-actuated. Oleh karena itu, metode Direct Inverse Control DIC berbasis NN cocok diterapkan sebagai pengendali terbang kedua tipe UAV tersebut, dengan unjuk kerja yang lebih baik dibandingkan dengan Sistem Kendali saat ini yang berbasis metode Proportional-Integral-Differential PID .UAV berkembang pesat untuk berbagai aplikasi, mulai dari penggunaan quadrotor untuk videografi jarak dekat, hingga UAV fixed-wing berekor inverted-V untuk misi taktis dan strategis. Quadrotor banyak digunakan karena kemampuan hovering serta take-off dan landing secara vertikal untuk misi di area yang sempit dan berlangsung singkat sesuai keterbatasan daya baterainya. Untuk mengatasi keterbatasan tersebut, UAV fixed-wing digunakan untuk area yang luas dan berlangsung lama. BPPT merespon kebutuhan ini dengan mengembangkan Pesawat Udara Nir Awak PUNA Alap-Alap dengan konfigurasi fixed-wing dan ekor inverted-V.Penggunaan ekor inverted-V akan meningkatkan kemampuan maneuver UAV. Meski demikian, ekor inverted-V tersebut memunculkan kopling tambahan antara modus gerak pitch dengan modus roll-yaw sehingga kompleksitas pengendaliannya meningkat dibandingkan dengan ekor T konvensional. Oleh karena itu, diperlukan metode kendali komprehensif yang mengakomodasi aspek nonlinearitas dan kopling-silang akibat hal tersebut. Metode berbasis NN cocok diterapkan untuk UAV karena mekanisme pembelajaran yang dimilikinya untuk mereplika dinamika sistem untuk Identifikasi Sistem dan sebaliknya, mampu membangun inversi dinamika sistem untuk DIC-NN .Di dalam analisis ini, kedua UAV dimodelkan dengan identifikasi berbasis NN untuk mengakomodasi karakter nonlinear dan kopling silangnya. Selanjutnya, DIC-NN dibangun untuk memetakan output UAV terhadap input yang bersesuaian. Unjuk kerja DIC- NN ini dibandingkan terhadap PID sebagai representasi metode kendali yang ada saat ini. Sistem Kendali DIC-NN menghasilkan settling time yang lebih singkat dan overshoot yang lebih kecil dibanding PID.
ABSTRACT
The research in this dissertation focused to analyze the Neural Network NN based control system for rotorcraft and the fixed-wing Unmanned Aerial Vehicle UAV . The Quadrotor and the fixed-wing UAV with incerted-V tail were chosen to represent both of UAV types characterized by the nonlinear flight dynamics, as well as strong cross-coupling and under-actuated condition. Therefore, the NN based Direct Inverse Control DIC method is suitable for a UAV flight controller, with a better performance compared to the existing Proportional-Integral-Differential PID -based Control System.UAVs are growing rapidly for a variety of applications, ranging from Quadrotor for a close-range videography, to the inverted-V tail fixed-wing UAVs in the tactical and strategic missions. Quadrotor is popular due to the ability of hovering and vertically take-off and landing in the narrow areas for short duration due to the limitation of the battery capability. To overcome these limitations, fixed-wing UAVs are used for large areas and long-duration mission. BPPT responds this requirement by developing the Alap-Alap UAV with the fixed-wing configuration and equipping it with inverted-V tail.The application of inverted-V tail aimed to increase UAV maneuverability. However, the inverted-V tail generates an additional coupling between the pitch-motion mode and the roll-yaw mode so that the control complexity increases than the conventional T-tail. Therefore, a comprehensive control method is required to accommodates the nonlinearity and cross-coupling aspects of it. The NN-based method is suitable for UAVs because of the learning mechanism it has to replicate system dynamics for System Identification and vice versa, capable of building system dynamic inversions for DIC-NN .In this analysis, both UAVs are modeled with NN-based identification to accommodate their nonlinear characters and cross-coupling. Furthermore, DIC-NN is built to map the UAV output with the corresponding input. The DIC-NN performance is compared against PID as a representation of the existing control method. The DIC-NN Control System produces a shorter settling time and a smaller overshoot than the PID.
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2472
UI - Disertasi Membership  Universitas Indonesia Library
cover
Agus Buono
Abstrak :
Suara merupakan suatu besaran yang memenuhi syarat sebagai ciri biometrik yang efektif dan efisien. Namun demikian, suara adalah fenomena yang merupakan perpaduan multidimensi serta dipengaruhi berbagai aspek, seperti karakteristik pembicara (dimensi titik artikularis, emosi, kesehatan, umur, jenis kelamin, dialek), bahasa, dan lingkungan (background dan media transmisi), sehingga sistem yang telah dikembangkan hingga sekarang belum bisa bekerja dengan baik pada situasi real. Hal inilah yang melatarbelakangi penelitian ini dilakukan. Pada penelitian ini dilakukan kajian terhadap teknik higher order statistics (HOS) dan model Mel-Frequency Cepstrum Coefficients (MFCC) sebagai ekstraksi ciri yang diintegrasikan dengan Hidden Markov Model (HMM) sebagai pengenal pola untuk menghasilkan sistem identifikasi pembicara yang lebih robust terhadap noise, khususnya Gaussian Noise. Penelitian yang dilakukan lebih difokuskan pada bagian ekstraksi Ciri dari sistem identifikasi pembicara. Sementara ini, bagian pengenal pola menggunakan teknik yang telah banyak dikaji pada berbagai riset pemrosesan suara dan memberikan hasil yang baik, yaitu HMM. Strategi yang dilakukan adalah melalui pendekatan empiris untuk menunjukkan kegagalan teknik ekstraksi ciri konvensional, yaitu ID-MFCC yang berbasis power spektrum, pada lingkungan ber-noise, dilanjutkan dengan mengkaji permsalahannya, dan diusulkan teknik ekstraksi berbasis HOS untuk mengatasi pemasalahan tersebut. Berikutnya adalah melakukan serangkaian percobaan untuk menunjukkan efektifitas teknik yang diusulkan, studi komparasi dan mengajukan suatu usulan rancangan sistem. Berdasar bukti empiris, terlihat bahwa permasalahan 1D-MFCC adalah pada inputnya, yaitu power spektrum yang bersifat tidak stabil terhadap noise. Pada penelitian ini diusulkan untuk mengganti power spektrum dengan bispektrum yang secara teori lebih robust terhadap noise. Teknik yang diusulkan adalah suatu metodologi untuk mengekstrak nilai bispektrum sinyal suara dengan MFCC dan diintegrasikan dengan HMM untuk membentuk sistem identitikasi pembicara. Oleh karena itu, pada penelitian ini dilakukan perluasan teknik ID-MFCC menjadi 2D-MFCC. Untuk meningkatkan efektifitas sistem, diusulkan teknik kuantisasi sebagai cara merepresentasikan nilai bispektrum sehingga distribusi spasialnya terakomodasi, dan dilanjutkan dengan transformasi wrapping dan kosinus seperti pada MFCC. Hasil percobaan menunjukkan bahwa teknik konvensional yang berbasis pada power spektrum dapat menangkap ciri suara tanpa penambahan noise dengan baik dan jika dipadukan dengan Mel-Frequency Cepstrum Coefficients (MFCC) sebagai ekstraksi ciri dan HMM sebagai pengenal pola, maka akan menghasilkan sistem dengan akurasi di atas 98.8%. Namun demikian, dengan penambahan noise 20 dB, nilai power spektnlm mengalami perubahan secara nyata, sehingga akurasi sistem jatuh hingga level di bawah 50%. Teknik penghapusan noise secara adoptive mampu meningkatkan akurasi menjadi 77.7%, namun dengan noise yang lebih besar, teknik ini gagal bekeqia dengan baik. Sistem yang dikembangkan dengan menggunakan bispektrum sebagai penentu ciri dipadukan dengan MFCC yang diperluas ke dua dimensi berhasil memberikan akurasi 99.9% untuk sinyal suara asli. Namun untuk sinyal dengan noise 20 dB, akurasi sistem menjadi sekitar 70%. Optimasi pada bentuk Elter pada proses MFCC dengan algoritma genetika mampu meningkatkan alcurasi menjadi 88.8% Akan tetapi dengan noise yang lebih tinggi, sistem gagal bekerja dengan baik. Teknik kuantisasi skalar terhadap nilai bispektrum yang dilanjutkan dengan proses wrapping dan transfomasi kosinus seperti yang dilakukan pada MFCC mampu meningkatkan robustness sistem terhadap noise dengan akurasi 99.5% dan 83% masing-rnasing untuk sinyal asli dan sinyal dengan penambahan noise 20 dB. Namun untuk noise 10 dB, teknik ini gagal bekerja dengan baik. Dari percobaan dengan teknik kuantisasi velctor, terlihat bahwa rata-rata nilai bispektrum di atas kuartil tiga adalah penduga terbaik bagi nilai bispektrum setiap channel dengan jumlah 400 channel. Selain itu nilai parameter yang optimum pada proses ekstraksi ciri dengan kuantisasi vektor dilanjutkan dengan proses wrapping dan transformasi kosinus pada sinyal dengan penambahan noise adalah jarak filter linear 75, jarak Elter logaritma 1.06 dan proporsi filter linear dan legaritma 30:20. Kinerja sistem menunjukkan peningkatan yang berarti dengan akurasi 88% dan 75.5% masing-masing untuk sinyal dengan penambahan noise 20 dB dan 10 dB. Namun demikian untuk sinyal asli justru lebih rendah, yaitu dengan akurasi maksimum hanya 94.5%. Hal ini berarti bahwa teknik ekstraksi ciri yang efektif tergantung dari kualitas sinyal masukan. Oleh karena itu sistem yang dikembangkan sebaiknya dilengkapi di bagian awalnya dengan kemampuan untuk menduga kualitas sinyal masukan. Dari studi eksploratif terhadap nilai autokorelasi dan ragam sinyal suara, diperoleh bahwa kualitas sinyal dapat diidentifikasikasi dengan besaran yang dirumuskan sebagai negatif dari logaritma perkalian nilai absolut autokerelasi dari lag 1 hingga lag 21. Nilai ambang untuk membedakan sinyal sesuai kualitasnya dengan besaran tersebut adalah di antara 7 hingga 15. Jika nilai besaran tersebut kecil, maka teknik 1D-MFCC lebih sesuai untuk diterapkan. Sedangkan untuk hal lainnya, disarankan menggunakan teknik kuantisasi vektor terhadap nilai bispektrum sebagai pengekstraksi ciri. Berdasar nilai ambang inilah disusun prototipe sistem identifikasi pembicara menggunakan software Matlab. ......Mel-Frequency Cepstrum Coefficients (MFCC) as speech signal feature extraction technique and integrated with Hidden Markov Model (HMM) as classifier to form a speaker identification system that more robust to Gaussian Noise. The experiments is focused on the subsystem of feature extraction, whereas in the subsystem of classifier, we use the HMM. In this research, we show the ineffectiveness of lD-MFCC as feature extraction in the noisy environment empirically, analysis the problem and propose some techniques for feature extraction to handle the problem. Next, we conduct a series of experiments to show the effectiveness of the propose methods. Finally, we make a comparison among methods to capture the characteristics of each and propose a prototype of speaker identification system. According to the result, the main problem with 1D-MFCC is in the aspect of its input, i.e. power spectrum. This quantity is not stable enough with existing noise. In this research we replace the power spectrum by bispectrum that more robust to noise. Then, the propose methods is focused on how to extract the bispectrum value and integrate with HMM to form the speaker identification system. Firstly, 1D-MFCC extended into 2D-MFCC, so the technique workable for bispectrum value as the input. In order to improve the system performance, we use scalar and vector quantization for bispectrum value representation and continue with wrapping and cosines transform prior to classifier process. The experiments show that the conventional method based on power spectrum (ID-MFCC) gives a good result for signal without addition by Gaussian noise, with 98.8% of accuracy. Nevertheless, with noise only 20 dB, the system performance drop significantly with accuracy below 50%. The noise canceling technique can improve the accuracy up to 77.7%, but fails for noise more than 20 dB. The 2D-MFCC that developed using bispectrum as speech signal feature gives 99.9% of accuracy for original signal and 88.8% for signal corrupted by 20 dB of noise. Compare with ID-MFCC, this system performance is higher. Nevertheless, for noise more than 20 dB, the system fails. In order to improve the system performance, we propose scalar and vector quantization for representation the bispectrum value, and continue with wrapping and cosines transform prior to classifier process. The vector quantization technique yield the system more stable with noise, and gives the highest recognition compare with others, especially for signal corrupted by noise. The accuracy for signal with addition by 20 dB and 10 dB of noise are 89% and 75.5%, respectively. But, for original signal, the accuracy is only around 90%. It means the effective technique for feature extraction depend on the quality of input signal. According to the exploration of autocorrelation of speech signal, it is shown that the signal quality can be divided by the negative value of multiplication of absolute value of its autocorrelation from lag 1 until lag 21. The threshold lies between 7 and 15. If the value is small enough, it is better for use the lD-MFCC technique. Otherwise, we advise to use the system based on bispectrum represented by vector quantization and continue by the wrapping and cosines transform prior to the classifier process. By using this threshold, we propose a prototype for speaker identification system developed by Matlab software.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
D958
UI - Disertasi Open  Universitas Indonesia Library