Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Dimas Arya Thayeb
Abstrak :
ABSTRAK Penggunaan serat alam Tandan Kosong Kelapa Sawit (TKKS) sebagai penguat dalam komposit polimer terus digalakkan sebagai alternatif bahan baku yang murah dan berlimpah. Namun, sifat hidrofilik yang dimiliki oleh serat alam TKKS akibat kandungan lignin dan hemiselulosa menyebabkan TKKS memiliki kompabilitas yang rendah dengan matriks polimer yang digunakan. Proses bleaching merupakan metode modifikasi permukaan yang bertujuan untuk meningkatkan sifat hidrofobisitas dari serat TKKS. Potensi penggunaan Hidrogen Peroksida (H2O2­) sebagai bleaching agent dalam larutan alkali menunjukan kemampuan untuk menghilangkan kandungan lignin, hemiselulosa, dan impuritas yang berada pada permukaan serat alam TKKS. Perubahan sifat permukaan TKKS kemudian diteliti menggunakan pengujian sudut kontak dengan metode sessile drop test, SEM, dan FTIR. Tegangan permukaan dari TKKS tanpa perlakuan menunjukan angka 35.18 dynes/cm dan meningkat menjadi 32.33 dynes/cm setelah dilakukan bleaching mengindikasikan adanya peningkatan sifat hidrofobik dari serat TKKS. Selain itu, analisis kuantitatif nilai dispersi menggunakan metode perhitungan statistik skewness ratio dan coefficient of variation menunjukan adanya kecenderungan peningkatan distribusi ukuran serat dari TKKS hasil bleaching. Nilai koefisien variasi yang menurun dari 1.40 menjadi 1.20 setelah perlakuan bleaching menunjukan kondisi distribusi serat TKKS yang lebih seragam. Selain itu, nilai skewness ratio serat TKKS hasil bleaching menunjukan peningkatan nilai dari 1.98 menjadi 2.13 mengindikasikan bahwa serat yang mengalami aglomerasi semakin sedikit. Sedangkan, pada perhitungan Nearest Neighbor Index (NNI), adanya penurunan nilai NNI dari 0.42 pada serat TKKS tanpa perlakuan menjadi 0.32 pada serat hasil perlakuan mengindikasikan meningkatnya kecenderungan serat TKKS untuk mengalami clustering.
ABSTRACT The use of Oil Palm Empty Fruit Bunch (OPEFB) fibers as reinforcement in polymer composites continues to be promoted as an alternative to man-made fiber because of its inexpensive and abundant quantity. However, the hydrophilic nature of natural OPEFB fibers due to lignin and hemicellulose content causes OPEFB to have low compatibility with the common polymer matrix like polypropylene. Bleaching as a surface modification method is used to improve the of OPEFB fibers. The potential use of Hydrogen Peroxide (H2O2) as a bleaching agent in an alkaline solution shows the ability to eliminate lignin, hemicellulose, and impurities that are present on the surface of the natural OPEFB fibers. Changes in the surface properties of OPEFB are then examined using contact angle testing using sessile drop method, SEM, and FTIR analysis. The surface tension of the OPEFB without treatment shows the number as high as 35.18 dynes/cm and decreases to 32.33 dynes/cm after bleaching treatment, indicates an increase in the nature of the OPEFB fibers. In addition, quantitative analysis of dispersion values ​​using the statistical calculation method of skewness ratio and coefficient of variation showed tendency of increasing uniformity of size distribution on OPEFB fiber after bleaching treatment. The coefficient of variation decreased from 1.40 to 1.20 after the bleaching treatment showed a more uniform condition of the OPEFB fiber size distribution relative to its average size. In addition, the skewness ratio of post-bleaching OPEFB fibers shows an increase in value from 1.98 to 2.13 indicating that the agglomeration of fiber is getting sparse. Whereas, in the calculation of Nearest Neighbor Index (NNI), a decrease in the value of NNI from 0.42 on untreated OPEFB fibers to 0.32 on treated fibers indicates an increase in the tendency of OPEFB fibers to experience clustering.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Audiya Dewi Rachmawati
Abstrak :
Telah dilakukan sintesis katoda LiFePO4/V berlapis karbon dari karbon aktif tempurung kelapa untuk katoda baterai lithium ion. Prekursor yang digunakan adalah LiOH, NH4H2PO4, dan FeSO4.7H2O dibuat melalui proses hidrotermal. Selanjutnya, dilakukan pencampuran karbon dari karbon aktif tempurung kelapa sebanyak 4 dan variasi vanadium serbuk yang bersumber dari H4NO3V. Campuran LiFePO4/V/C dikarakterisasi menggunakan analisis termal STA untuk menentukan temperatur sintering. Hasilnya sintesis terjadi pada temperatur di atas 681,950C dan serbuk berwarna abu-abu gelap sebagai karakteristik dari LiFePO4. Kemudian proses sintering dilakukan pada temperatur 8500C selama 4 jam. Serbuk LiFePO4 sintesis dikarakterisasi menggunakan difraksi sinar-X XRD, mikroskop elektron dan pendeteksi unsur SEM-EDS serta sifat listrik melalui spektroskopi impedansi EIS. Hasil XRD menunjukkan LiFePO4/V/C telah terbentuk dengan struktur berbasis olivin. Hasil SEM-EDS menggambarkan partikel yang teraglomerasi dan LiFePO4/V telah terlapisi karbon. Hasil EIS menunjukkan konduktivitas sebesar 5,33 x 10-5 S/cm untuk LiFePO4/C tanpa vanadium dan 6 x 10-6 S/cm untuk LiFePO4/C dengan doping vanadium 5.
Activated carbon from coconut shell has been used as an additive to form LiFePO4 V C composite for lithium ion battery cathode. Lithium iron phosphate LFP was synthesized from the precursors of LiOH, NH4H2PO4, and FeSO4.7H2O via hydrothermal method. The LiFePO4 V C composite was formed by adding various vanadium concentration 0, 3, 5, 7 at. and a fix concentration of carbon 4 wt. Thermal analysis STA was used to characterize the formation of LFP and the transition temperature of the composite from which a transition temperature of 681.950C was obtained. X ray diffraction XRD was used to characterize the crystal structure, whereas scanning electron microscope SEM equipped with energy dispersive X ray spectroscopy EDX was used to characterize the morphology and composition of the composite. The conductivity of the composite was examined using electrical impendance spectroscopy EIS. The XRD results showed that LiFePO4 V C has an olivine structure with Pnmb space group. The SEM EDX results depicted aglomerate particles but most LiFePO4 V has been coated by carbon. EIS test results showed a conductivity of 5.33 x 10 5 S cm for LiFePO4 C with no vanadium and 6.0 x 10 6 S cm for 5 wt. vanadium doped LiFePO4 V C.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68917
UI - Skripsi Membership  Universitas Indonesia Library