Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Rahmayetty
Abstrak :
ABSTRAK
Sintesis poli asam laktat PLA menggunakan katalis lipase Candida rugosa dilakukan sebagai salah satu upaya untuk menghasilkan plastik biodegradable ramah lingkungan. dan berasal dari sumber daya terbarukan. Penggunaan lipase Candida rugosa sebagai pengganti katalis logam dalam polimerisasi telah berhasil mensintesis poli asam laktat PLA . Pelaksanaan kegiatan penelitian dilakukan melalui 3 tahapan proses. Tahapan awal adalah polikondensasi asam laktat dengan variasi temperatur untuk menghasilkan oligomer OLLA dengan berat molekul berbeda-beda. Tahap berikutnya adalah depolimerisasi dengan variasi temperatur, tekanan, jenis dan konsentrasi katalis serta berat molekul OLLA untuk menghasilkan laktida. Tahap terakhir adalah polimerisasi laktida menggunakan katalis lipase Candida rugosa dengan variasi temperatur dan konsentrasi lipase untuk menghasilkan PLA. Hasil penelitian menunjukkan bahwa polikondensasi pada temperatur konstan 150; 180; 200oC selama 4 jam dan temperatur bertahap 150oC selama 2 jam dan 180oC selama 2 jam menghasilkan OLLA dengan berat molekul Mw/Mn secara berurutan sebesar 1080/380; 1736/893; 2487/1375 dan 2820/2389. Tahap depolimerisasi menghasilkan laktida dengan stereoisomer L-laktida. Yield dan kemurnian laktida tertinggi masing-masing sebesar 78,8 dan 81,03 . Kondisi optimum tahap depolimerisasi adalah pada temperatur 210oC, tekanan 0,1 atm dan menggunakan katalis SnCl2 0,1 b/b serta berat molekul Mw/Mn OLLA sebesar 2820/2389. Polimerisasi pembukaan cincin L-laktida menggunakan katalis lipase Candida rugosa berlangsung optimum pada temperatur 90oC dengan konsentrasi lipase 2 b/b . Berat molekul PLA tertinggi didapatkan sebesar Mw/Mn 5428/2854 dengan yield 92,58 .
ABSTRACT
The synthesis of polylactic acid PLA using Candida rugosa lipase catalyst is performed as one of the efforts to produce environmentally friendly biodegradable plastic and derived from renewable resources. The use of Candida rugosa lipase as a substitute for metal catalyst in polymerization has successfully synthesized polylactic acid PLA . Implementation of research activities conducted through 3 stages of the process. The initial stage is the polycondensation of lactic acid with temperature variations to produce oligomers OLLA of varying molecular weights. The next step is depolymerization with variation of temperature, pressure, type and concentration of catalyst and molecular weight of OLLA to produce lactide. The last stage is lactide polymerization using Candida rugosa lipase catalyst with variation of temperature and lipase concentration to produce PLA. The results showed that polycondensation at constant temperature 150 180 200oC for 4 hours and gradually temperature 150oC for 2 hours and 180oC for 2 hours produced average molecular weight Mw Mn of 1080 380 1736 893 2487 1375 and 2820 2389, respectively. The depolymerization stage produced lactides with l lactide stereoisomers. The highest yields and purity of lactides were 78.8 and 81.03 , respectively. The optimum condition of the depolymerization step was at temperature of 210oC, pressure of 0.1 atm and using SnCl2 0.1 w w catalyst and average molecular weight Mw Mn of OLLA of 2820 2389. The ring opening polymerization of lactides using Candida rugosa lipase catalyst was optimum at 90 C with a lipase concentration of 2 w w . The highest molecular weight of PLA was obtained Mw Mn 5428 2854 and yield of PLA was 92.58 .
2017
D2293
UI - Disertasi Membership  Universitas Indonesia Library
cover
Achmadin Luthfi Machsun
Abstrak :
ABSTRAK
Microreaktor telah menjadi teknologi yang menjanjikan dalam bidang bioteknologi dan teknik kimia. Dalam penelitian ini dikembangkan konsep baru biokatalis membran mikroreaktor (BMM) untuk reaksi transesterifikasi secara kontinyu dengan memanfaatkan pori-pori membran sebagai mikroreaktor. Pori-pori membran yang dilapisi dengan enzim lipase dari Pseudomonas sp dengan cara adsorpsi sederhana dan dilanjutkan dengan filtrasi bertekanan. Suatu larutan lipase dibiarkan mengalir pada membran dan merembes melalui pori-pori dan molekul lipase molekul teradsorpsi pada dinding pori-pori bagian dalam. Membran yang terbuat dari mixed cellulose ester (MCE) dan polyetersulfone (PES) digunakan untuk studi immobilisasi lipase tetapi hanya PES membran digunakan sebagai mikroreaktor untuk studi transesterifikasi. Sifat katalitik biokatalis membran mikroreaktor (BMM) telah dipelajari dalam sintesis biodiesel melalui reaksi transesterifikasi triolein dengan metanol. Transesterifikasi dilakukan dengan melewatkan larutan triolein dan metanol melalui pori-pori membran yang telah dilapisi lipase. Konversi maksimum triolein dengan BMM sekitar 80% dengan waktu reaksi 20-30 menit. Sistem biokatalis membran mikroreaktor dengan lipase sebagai biokatalis menunjukkan aktivitas yang jauh lebih unggul dibandingkan dengan lipase bebas, yaitu 12-25 kali lipat. Tidak ada penurunan fluks dan aktivitas yang diamati selama 12 hari operasi terus-menerus. Biokatalis membran mikroreaktor memiliki potensi yang besar untuk diterapkan dalam proses transesterifikasi trigliserida pada produksi biodiesel komersial karena akan mengurangi limbah dalam skala besar dan memiliki waktu reaksi yang jauh lebih kecil.
ABSTRACT
Microreactors have become a promising technology in the biotechnology and chemical engineering field. In this study a new concept of biocatalytic membrane microreactor was developed for continuous transesterification reaction by utilizing membrane pores as a kind of microreactor. The membrane pores were coated with lipase from Pseudomonas sp by simple adsorption and continues with pressure driven filtration. A lipase solution was allowed permeating through the membrane and lipase molecule adsorbed on the inner wall of the membrane pores. Membranes made of mixed cellulose ester (MCE) and polyethersulfone (PES) were used for lipase immobilization studies but only PES membranes were used as microreactor for transesterification studies. The catalytic properties of biocatalytic membrane microreactor (BMM) have been studied in biodiesel synthesis through transesterification of triolein with methanol. Transesterification was carried out by passing solution of triolein and methanol through pores of the membrane. The maximum conversion of triolein with lipase-membrane microreactor was approximately 80% with reaction time 20-30 minutes. The biocatalytic membrane microreactor system with lipase as biocatalysts showed far superior activities compared to those of free lipase, i.e. 12-25 fold. No decrease in flux and activities were observed over a period of 12 days of continuous operation. These biocatalytic membrane microreactor is of great potential to be applied in the process of transesterification of triglycerides for commercial biodiesel production since it would reduce waste in large scale and has a much smaller reaction time.
Depok: 2011
D1188
UI - Disertasi Open  Universitas Indonesia Library
cover
Achmadin Luthfi Machsun
Abstrak :
ABSTRAK
Microreaktor telah menjadi teknologi yang menjanjikan dalam bidang bioteknologi dan teknik kimia. Dalam penelitian ini dikembangkan konsep baru biokatalis membran mikroreaktor (BMM) untuk reaksi transesterifikasi secara kontinyu dengan memanfaatkan pori-pori membran sebagai mikroreaktor. Poripori membran yang dilapisi dengan enzim lipase dari Pseudomonas sp dengan cara absorpsi sederhana dan dilanjutkan dengan filtrasi bertekanan. Suatu larutan lipase dibiarkan mengalir pada membran dan merembes melalui pori-pori dan molekul lipase molekul teradsorpsi pada dinding pori-pori bagian dalam. Membran yang terbuat dari mixed cellulose ester (MCE) dan polyetersulfone (PES) digunakan untuk studi immobilisasi lipase tetapi hanya PES membran digunakan sebagai mikroreaktor untuk studi transesterifikasi. Sifat katalitik biokatalis membran mikroreaktor (BMM) telah dipelajari dalam sintesis biodiesel melalui reaksi transesterifikasi triolein dengan metanol. Transesterifikasi dilakukan dengan melewatkan larutan triolein dan metanol melalui pori-pori membran yang telah dilapisi lipase. Konversi maksimum triolein dengan BMM sekitar 80% dengan waktu reaksi 20-30 menit. Sistem biokatalis membran mikroreaktor dengan lipase sebagai biokatalis menunjukkan aktivitas yang jauh lebih unggul dibandingkan dengan lipase bebas, yaitu 12-25 kali lipat. Tidak ada penurunan fluks dan aktivitas yang diamati selama 12 hari operasi terus-menerus. Biokatalis membran mikroreaktor memiliki potensi yang besar untuk diterapkan dalam proses transesterifikasi trigliserida pada produksi biodiesel komersial karena akan mengurangi limbah dalam skala besar dan memiliki waktu reaksi yang jauh lebih kecil.
ABSTRACT
Microreactors have become a promising technology in the biotechnology and chemical engineering field. In this study a new concept of biocatalytic membrane microreactor was developed for continuous transesterification reaction by utilizing membrane pores as a kind of microreactor. The membrane pores were coated with lipase from Pseudomonas sp by simple adsorption and continues with pressure driven filtration. A lipase solution was allowed permeating through the membrane and lipase molecule adsorbed on the inner wall of the membrane pores. Membranes made of mixed cellulose ester (MCE) and polyethersulfone (PES) were used for lipase immobilization studies but only PES membranes were used as microreactor for transesterification studies. The catalytic properties of biocatalytic membrane microreactor (BMM) have been studied in biodiesel synthesis through transesterification of triolein with methanol. Transesterification was carried out by passing solution of triolein and methanol through pores of the membrane. The maximum conversion of triolein with lipasemembrane microreactor was approximately 80% with reaction time 20-30 minutes. The biocatalytic membrane microreactor system with lipase as biocatalysts showed far superior activities compared to those of free lipase, i.e. 12-25 fold. No decrease in flux and activities were observed over a period of 12 days of continuous operation. These biocatalytic membrane microreactor is of great potential to be applied in the process of transesterification of triglycerides for commercial biodiesel production since it would reduce waste in large scale and has a much smaller reaction time.
Depok: 2011
D1178
UI - Disertasi Open  Universitas Indonesia Library