Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 41 dokumen yang sesuai dengan query
cover
Alfina Wijaya
Abstrak :
Premi adalah sejumlah uang yang ditetapkan oleh perusahaan asuransi atau perusahaan reasuransi dan disetujui oleh pemegang polis untuk dibayarkan. Hal tersebut sesuai dengan perjanjian asuransi atau perjanjian reasuransi. Dalam penetapan tarif premi asuransi kendaraan bermotor, perusahaan asuransi memperhitungkan eksposur risiko yang diterima kendaraan bermotor untuk mengestimasi jumlah klaim. Pada umumnya, perusahaan asuransi kendaraan bermotor hanya memperhitungkan faktor durasi kontrak asuransi dalam memperhitungkan eksposur risiko. Namun, pada kenyataannya terdapat faktor lain yang memengaruhi risiko terjadinya kecelakaan, salah satunya adalah jarak tempuh kendaraan. Faktor risiko jarak tempuh telah dipertimbangkan pada asuransi Pay-As-You-Drive (PAYD). Pada penelitian ini, dilakukan penghitungan eksposur risiko pada kendaraan bermotor dengan memperhitungkan jarak tempuh kendaraan dan durasi kontrak asuransi. Tujuannya adalah untuk melihat efek simultan yang dihasilkan oleh jarak tempuh dan durasi kontrak asuransi sebagai kovariat terhadap variabel respons jumlah klaim menggunakan Generalized Additive Model (GAM). GAM digunakan untuk menangkap kemungkinan adanya hubungan non-linear antara kovariat dengan variabel respons. Dalam penelitian ini, GAM dikonstruksi dengan cubic splines dan untuk mengestimasi koefisien model, digunakan metode Penalized Iteratively Reweighted Least Squares (PIRLS). Setelah koefisien model diestimasi, GAM dapat digunakan untuk memprediksi nilai frekuensi klaim. Nilai frekuensi tersebut dapat dimanfaatkan untuk menentukan relativitas harga premi terhadap reference premium. Reference premium adalah nilai premi yang diterapkan ketika diasumsikan tidak ada pengaruh dari kovariat. Selanjutnya, GAM diimplementasikan pada data klaim asuransi kendaraan bermotor untuk menentukan tarif premi. ......Premium is an amount of money set by an insurance company or reinsurance company and agreed upon by the policyholder to be paid based on an insurance or reinsurance policy. In establishing premium rates for motor vehicle insurance, insurance companies consider the risk exposure associated with motor vehicles to calculate the estimated number of claims. Generally, motor vehicle insurance companies only consider the duration of the insurance contract when calculating risk exposure. However, there are other factors that influence the risk of accidents, one of which is the distance traveled by the vehicle. The mileage risk factor has been considered in Pay-As-You-Drive (PAYD) insurance. In this study, risk exposure in motorized vehicles was calculated by considering the distance traveled by the vehicle and the duration of the insurance contract. The objective is to examine the simultaneous effects of mileage and insurance contract duration as covariates on the response variable of claim amount using the Generalized Additive Model (GAM). GAM is used to capture the possibility of a non-linear relationship between the covariates and the response variable. In this study, GAM is constructed with cubic splines and to estimate the model coefficients, the Penalized Iteratively Reweighted Least Squares (PIRLS) method is used. Once the model coefficients are estimated, the GAM can be used to predict claim frequency values. The frequency value can be used to determine the relativity of the premium price to the reference premium. The reference premium is the premium value that is applied when it is assumed that there is no influence from covariates. Furthermore, GAM is implemented on motor vehicle insurance claim data to determine premium rates.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Wulandari
Abstrak :
Mata merupakan salah satu indera terpenting bagi kehidupan manusia. Umumnya, banyak manusia yang mengabaikan gangguan fungsi penglihatan, dimana gangguan fungsi penglihatan ini mengindikasikan awal mula penyakit mata. Penyakit mata adalah gangguan fungsi penglihatan berkisar dari gangguan fungsi penglihatan ringan hingga gangguan fungsi penglihatan berat yang dapat menyebabkan kebutaan. Dalam melakukan diagnosa terhadap pasien gangguan fungsi penglihatan memiliki jenis penyakit mata yang diderita, diperlukan tahapan pemeriksaan retina dengan ophthalmoscopy atau fotografi fundus. Setelah itu, seorang dokter spesialis mata menganalisis jenis penyakit mata yang diderita pasien tersebut. Namun, karena terbatasnya sarana fasilitas kesehatan dan dokter spesialis mata yang memeriksa dan mengoperasi. Oleh karena itu, dibutuhkan alat deteksi dini dengan menggunakan data citra agar pasien gangguan penglihatan dapat ditangani sebelum pasien menderita gangguan fungsi penglihatan berat atau dapat mengalami kebutaan. Pada penelitian ini, diusulkan oleh peneliti model klasifikasi citra fundus ke dalam kelas normal, katarak, glaukoma, dan retina disease menggunakan Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data citra yang digunakan merupakan data fundus image retina yang berasal dari website kaggle. Sebelum data citra fundus image masuk ke dalam proses training model, dilakukan tahapan preprocessing pada data citra fundus image. Pada tahapan proses training dalam CNN digunakan fungsi optimasi untuk meminimalkan fungsi loss. Adapun fungsi optimasi yang digunakan dalam penelitian ini adalah Adam dan diffGrad. Hasil penelitian ini menunjukkan bahwa kedua fungsi optimasi tersebut memiliki hasil evaluasi training yang tidak jauh berbeda pada kedua fungsi optimasi. Keunggulan menggunakan kedua fungsi optimasi ini adalah mudah diterapkan. Pada penelitian ini didapatkan training loss terkecil sebesar 0,4838, validation loss terkecil sebesar 0,6658, dan training accuracy terbaik sebesar 0,8570 yang dimiliki oleh fungsi optimasi Adam. Sedangkan untuk validation accuracy terbaik sebesar 0,7189 yang dimiliki oleh fungsi optimasi diffGrad. Sedangkan running time tercepat pada proses training model sebesar 2840,9 detik yang dimiliki oleh fungsi optimasi diffGrad. Setelah tahapan proses training, dilakukan evaluasi dengan data testing. Secara keseluruhan, apabila dilihat dari hasil testing yang terbaik dimiliki oleh fungsi optimasi Adam dengan nilai accuracy sebesar 63%, recall sebesar 63%, dan precision sebesar 63%. Sedangkan running time tercepat pada proses testing model adalah 5,4 detik yang dimiliki oleh fungsi diffGrad. Dapat disimpulkan bahwa metode CNN menggunakan Arsitektur AlexNet dan fungsi optimasi Adam memberikan performa terbaik dalam mendeteksi penyakit mata pada data fundus image. ......The eyes are one of the most important senses for human life. Generally, many people ignore visual impairment, where this visual impairment indicates the onset of eye disease. Eye disease is a visual impairment ranging from mild visual impairment to severe visual impairment which can lead to blindness. In diagnosing patients with visual impairment who have the type of eye disease they suffer, it is necessary to carry out a retinal examination with ophthalmoscopy or fundus photography. After that, an ophthalmologist analyzes the type of eye disease the patient is suffering from. However, due to limited medical facilities and ophthalmologists who examine and operate. Therefore, an early detection tool is needed using image data so that visually impaired patients can be treated before the patient suffers from severe visual impairment or can go blind. In this study, researchers proposed a model for classifying fundus images into normal, cataract, glaucoma, and retinal disease classes using Convolutional Neural Network (CNN) with AlexNet architecture. The image data used is retinal fundus image data from the Kaggle website. Before the fundus image data enters the training model process, a preprocessing stage is carried out on the fundus image data. At this stage of the training process in CNN, an optimization function is used to minimize the loss function. The optimization functions used in this study are Adam and differed. The results of this study indicate that the two optimization functions have training evaluation results that are not much different from the two optimization functions. The advantage of using these two optimization functions is that they are easy to implement. In this research, the smallest training loss is 0.4838, the smallest validation loss is 0.6658, and the best training accuracy is 0.8570 which is owned by the Adam optimization function. As for the best validation accuracy of 0.7189 which is owned by the diffGrad optimization function. Meanwhile, the fastest running time in the model training process is 2840.9 seconds, which is owned by the diffGrad optimization function. After the stages of the training process, evaluation is carried out with data testing. Overall, when viewed from the testing results, Adam's optimization function is the best with an accuracy value of 63%, recall of 63%, and precision of 63%. Meanwhile, the fastest running time in the model testing process is 5.4 seconds, which is owned by the diffGrad function. It can be concluded that the CNN method using AlexNet Architecture and Adam's optimization function provides the best performance in detecting eye diseases in fundus image data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrew Nilsen
Abstrak :
Investasi di saham bukanlah tanpa risiko. Harga saham selalu mengalami fluktuasi, dapat naik dan dapat turun. Ketidakpastian tersebut tidak dapat diabaikan, karena dapat menyebabkan kerugian jika salah dalam memprediksi arah pergerakan dari harga saham. Prediksi arah pergerakan harga saham yang lebih akurat dapat mengurangi risiko kerugian. Pada penelitian ini, prediksi arah pergerakan harga saham menggunakan faktor yang mempengaruhi arah pergerakan saham itu sendiri, yaitu harga saham sebagai variabel prediktor. Penelitian dilakukan dengan memanfaatkan salah satu metode dalam jaringan syaraf tiruan, yaitu gated recurrent unit dalam membangun model prediksi arah pergerakan harga saham tersebut. Data harga saham yang digunakan pada penelitian ini adalah data harga saham PT. Bank Central Asia Tbk (kode saham: BBCA) dan PT. Pabrik Kertas Tjiwi Kimia Tbk (kode saham: TKIM). Performa model yang digunakan dievaluasi dengan Root Mean Squared Error dan Mean Absolute Error. Pada penelitian ini didapatkan hasil bahwa hyperparameter prediksi harga saham BBCA terbaik diperoleh dengan menggunakan {epoch=500, batch size=32, dan units=24} dan hyperparameter prediksi harga saham TKIM terbaik diperoleh dengan menggunakan {epoch=250, batch size=128, dan unit=24}. Kemudian, dari RMSE dan MAE yang dihasilkan dari kedua saham disimpulkan bahwa model GRU merupakan model yang mampu memprediksi saham dengan baik. ......Investing in stocks is not without risk. The stock price always fluctuates, can go up and can go down. This uncertainty cannot be ignored, because it can cause losses if it is wrong in predicting the direction of movement of the stock price. A more accurate prediction of the direction of stock price movements can reduce the risk of loss. In this study, the prediction of the direction of stock price movements uses factor that influence the direction of stock movement itself, namely the stock price as a predictor variable. The research was conducted by utilizing one of the methods in artificial neural networks, namely the gated recurrent unit in building a predictive model for the direction of the stock price movement. The share price data used in this research is the share price data of PT Bank Central Asia (stock code: BBCA) and PT. Pabrik Kertas Tjiwi Kimia Tbk (stock code: TKIM). The model performance is evaluated by using Root Mean Squared Error and Mean Absolute Error. The results of this study indicate that the best prediction of the direction of BBCA's stock price movement is obtained by using {epoch=500, batch size=32, and units=24} and the best prediction of the direction of TKIM's stock price movement, is obtained by using {epoch=250, batch size=128, and units=24}. Then, from the RMSE and MAE generated from the two stocks, it can be concluded that the GRU model is a model capable of predicting stocks.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anissa Maulidya
Abstrak :
Malaria merupakan penyebab utama dari kenaikkan angka individu yang sakit dan meninggal di banyak negara. Hal ini terjadi karena malaria adalah salah satu penyakit fatal yang disebabkan oleh nyamuk betina Anopheles dengan cara menyebarkan parasite Plasmodium yang hidup dan bereproduksi di dalam sel darah manusia lewat gigitan nyamuk terinfeksi. Di antara tahun 2019-2020, kasus kematian akibat malaria mengalami peningkatan karena adanya COVID-19. Beragam upaya pencegahan malaria telah dilakukan pemerintah, contohnya dengan Long-lasting insecticidal nets (LLIN) dan Indoor Residual Spraying (IRS) tetapi kedua upaya tersebut memiliki efek samping yang merugikan manusia. Terdapat upaya pencegahan malaria lainnya yang digunakan, yaitu pemakaian krim penolak nyamuk. Upaya tersebut dapat mengatasi ketertarikan nyamuk pada manusia yang terinfeksi malaria yang biasa disebut dengan efek vektor bias. Pada penulisan skripsi ini, dikonstruksi model penyebaran malaria dengan pengaruh vector bias dan penggunaan krim penolak nyamuk. Model matematika tersebut merupakan sistem persamaan diferensial nonlinier enam dimensi yang direduksi menjadi tiga dimensi dengan pendekatan Quasi-Steady State Approximation dan proses nondimensionalisasi. Kajian analitik yang dilakukan pada model dalam skripsi ini terdiri dari analisis eksistensi dan kestabilan titik keseimbangan serta analisis Basic Reproduction Number (R_0). Simulasi numerik yang dilakukan pada skripsi ini terdiri dari analisis elastisitas dan sensitivitas R_0, dan simulasi autonomous. Berdasarkan kajian analitik dan simulasi numerik diperoleh bahwa penggunaan krim penolak nyamuk secara efektif dapat menyebabkan proporsi manusia dan nyamuk terinfeksi di suatu populasi dapat berkurang sehingga terdapat kemungkinan malaria dapat hilang dari suatu populasi. Sebaliknya, jika vektor bias bernilai semakin besar, maka proporsi nyamuk terinfeksi dan manusia terinfeksi di suatu populasi semakin bertambah yang artinya kemungkinan malaria untuk menetap di suatu populasi juga semakin besar. ......Malaria is a major cause of increasing numbers of sick and dead individuals in many countries. This happens because malaria is a fatal disease caused by female Anopheles mosquitoes by spreading the Plasmodium parasite that lives and reproduces in human blood cells through the bite of an infected mosquito. Between 2019-2020, malaria deaths increased due to COVID-19. Various efforts to prevent malaria have been carried out by the government, for example with Long-lasting insecticidal nets (LLIN) and Indoor Residual Spraying (IRS), but both efforts have side effects that are detrimental to humans. There are other malaria prevention efforts that are used, namely the use of mosquito repellent creams. These efforts can overcome the attraction of mosquitoes to humans infected with malaria which is commonly known as the vector-bias effect. In writing this thesis, a malaria spread model was constructed with the influence of bias vectors and the use of mosquito repellent creams. The mathematical model is a six-dimensional nonlinear differential equation system which is reduced to three dimensions using a Quasi-Steady State Approximation approach and a nondimensionalization process. The analytical study carried out on the model in this thesis consists of an analysis of the existence and stability of the equilibrium point and the analysis of the Basic Reproduction Number (R_0). Numerical simulation carried out in this thesis consists of elasticity and sensitivity analysis R_0, and autonomous simulation. Based on analytical studies and numerical simulations, it was found that the effective use of mosquito repellent creams can reduce the proportion of infected humans and mosquitoes in a population so that there is a possibility that malaria can be eliminated from a population. On the other hand, if the value of the vector-bias increases, the proportion of infected
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azalia Chika Barsella
Abstrak :
Model kredibilitas Buhlmann merupakan model yang menggunakan riwayat klaim dari data individu dan data kelompok untuk menentukan net premium. Dalam praktiknya, penggunaan model ini saja dalam perhitungan premi dapat mengakibatkan kerugian karena net premium tidak dapat menutupi biaya-biaya tambahan, seperti biaya komisi, biaya administrasi, dan lain-lain. Untuk mengatasi masalah tersebut, net premium perlu diaplikasikan pada suatu prinsip premi di mana premi yang dihasilkan akan menjadi risk premium yang dapat menutupi biaya-biaya tambahan. Metode Buhlmann menghasilkan net premium dalam bentuk momen pertama, sedangkan terdapat beberapa prinsip premi yang mengandung jenis momen lain, seperti momen kedua dan ekspektasi dari eksponensial variabel acak kerugian. Maka dari itu, metode Buhlmann akan diperluas dengan membangun net premium menggunakan Moment Generating Function (MGF). Penggunaan MGF disebabkan karena kaitannya yang erat dengan berbagai jenis momen. Pada studi ini, disimulasikan perhitungan risk premium menggunakan data real riwayat klaim, serta dilakukan analisis pengaruh periode observasi dan safety loading terhadap risk premium. Kenaikan periode observasi tidak hanya dapat menaikkan risk premium, tetapi juga menurunkan nilai risk premium. Namun, penurunan risk premium hanya terjadi pada pemegang polis yang tidak melakukan klaim selama periode observasi. Di sisi lain, kenaikan safety loading menyebabkan kenaikan risk premium. Hal ini sejalan dengan meningkatnya risk premium yang dibebankan ke pemegang polis seiring dengan meningkatnya biaya yang ditanggung perusahaan. ......The Buhlmann Credibility Model is a model that utilizes the claims history from individual and group data to determine the net premium. In practice, relying solely on this model for premium calculations may result in losses, as the net premium may not cover additional costs such as commission fees, administrative costs, and others. To address this issue, the net premium needs to be applicated with a premium principle where the generated premium will become a risk premium capable of covering additional costs. The Buhlmann method produces the net premium in the form of the first moment, while there are several premium principles that involve other types of moments, such as the second moment and the expectation of the exponential. Therefore, the Buhlmann method will be expanded by constructing the net premium using the Moment Generating Function (MGF). The use of MGF is justified due to its close association with various types of moments. In this study, the calculation of risk premiums will be simulated using real data on claims history, and an analysis will be conducted on the influence of the observation period and safety loading on the risk premium. An increase in the observation period can not only raise the risk premium but also decrease the risk premium. However, the decrease in the risk premium only occurs for policyholders who do not make claims during the observation period. On the other hand, an increase in safety loading will result in an increase in the risk premium. This is consistent with the rising risk premium imposed on policyholders as the company's incurred costs increase.
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evllyn Tamalia
Abstrak :

Malaria adalah penyakit yang disebabkan oleh parasit Plasmodium dan ditularkan melalui gigitan nyamuk Anopheles betina terinfeksi. Pada umumnya, terdapat lima spesies Plasmodium yang dapat menyebabkan penyakit malaria. Dari kelima spesies tersebut, Plasmodium falciparum dan Plasmodium vivax adalah dua spesies Plasmodium yang dapat menyebabkan terjadinya superinfeksi malaria dalam tubuh manusia. Berbagai upaya telah dilakukan pemerintah untuk mengendalikan malaria, di antaranya dengan menggunakan obat Artemisinin-based Combination Therapies (ACT) serta fumigasi untuk membasmi nyamuk. Pada penelitian ini, dikonstruksi model penyebaran superinfeksi malaria dengan intervensi pengobatan dan fumigasi. Lebih lanjut, kajian analitis dan numerik mengenai titik keseimbangan bebas penyakit, titik keseimbangan endemik, dan basic reproduction number (R0) dilakukan untuk memahami dinamika jangka pendek dari model yang telah dikonstruksi. (R0) merupakan ekspektasi banyaknya infeksi sekunder dalam suatu poopulasi. Hasil analisis sensitivitas menunjukkan bahwa laju kematian nyamuk akibat fumigasi merupakan parameter yang paling memengaruhi nilai R0. Kemudian, hasil simulasi autonomous menunjukkan bahwa pengobatan bagi manusia yang terinfeksi, baik terinfeksi Plasmodium falciparum dan Plasmodium vivax, dapat menghilangkan superinfeksi malaria dari populasi.


Malaria is a disease caused by the parasite Plasmodium and transmitted by the bite of an infected female Anopheles. In general, there are five species of Plasmodium that can cause malaria. Of the five species, Plasmodium falciparum and Plasmodium vivax are two species of Plasmodium that can allow malaria superinfection in the human body. Various attempts were made by the government to control malaria, such as with the Artemisininbased Combination Therapies (ACT) and fumigation to eradicate the mosquitoes. In this study, a malaria superinfection spread model was constructed with treatment and fumigation interventions. Furthermore, analytical and numerical studies of disease-free equilibrium points, endemic equilibrium points, and basic reproduction number (R0) are carried out to understand the short-term dynamics of the constructed model. (R0) is an expectation number for the second infection in population. The results of sensitivity analysis show that fumigation is the most influence parameter respect to the value of R0. Then, autonomous simulation show that treatment for infected humans, both infected with Plasmodium falciparum and Plasmodium vivax, can eliminate malaria superinfection from the population.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadel Muhammad
Abstrak :

Demam Berdarah Dengue (DBD) adalah salah satu masalah kesehatan masyarakat yang utama di Indonesia. Jumlah kasus DBD semakin bertambah seiring dengan laju pertumbuhan mobilitas dan populasi manusia. Radial basis function neural network (RBFNN) pada tugas akhir ini diimplementasikan untuk prediksi jumlah insiden mingguan DBD di DKI Jakarta. RBFNN adalah salah satu feed forward neural neworks yang hanya memiliki satu lapisan tersembunyi. Lapisan tersembunyi pada RBFNN dikonstruksi oleh sebuah fungsi aktivasi. K-means clustering digunakan untuk menunjang peforma dari RBFNN, yaitu untuk menentukan pusat dan lebar dari fungsi aktivasi yang digunakan. Performa dari RBFNN dilihat dari RMSE yang dihasilkan pada data training dan data testing. Dari implementasi yang dilakukan, dapat diperoleh bahwa pemilihan struktur atau model RBFNN sangat berpengaruh terhadap hasil prediksi yang diperoleh. Pada tugas akhir ini, RBFNN mampu memprediksi insiden mingguan DBD di DKI Jakarta dengan cukup baik tetapi RBFNN belum dapat menjakau data yang melonjak tinggi pada data testing.


Dengue Hemorrhagic Fever (DHF) is one of the main public health problems in Indonesia. The number of DHF cases and the spread of this disease is increasing along with mobility and population density. Radial basis function neural network (RBFNN) in this final project is implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN in this final project was implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN is a feed forward neural network model that has a single hidden layer. The hidden layer of RBFNN is constructed by an activation function. K-means clustering algorithm is used to improve the performance of RBFNN to determine the center and width of the activation function. The performance of RBFNN can be seen from the RMSE generated in the training data and testing data. From the implementation, it can be obtained that the choice of RBFNN structure or model is very influential on the predicted results obtained. In this final project, RBFNN is able to predict the weekly incidence of DHF in DKI Jakarta quite well but RBFNN has not been able to predict well the data that soared in the testing data.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radifa Hilya Paradisa
Abstrak :
ABSTRAK
Diabetic Retinopathy (DR) merupakan komplikasi jangka panjang dari Diabetes Mellitus (DM) yang mempengaruhi penglihatan karena adanya mikrovaskular pada retina. Hal ini dapat mengakibatkan gangguan penglihatan dan kebutaan jika ditangani terlambat. DR dapat dideteksi melalui pemeriksaan citra fundus. Salah satu pendekatan dalam mendeteksi DR pada citra fundus yaitu dengan pendekatan deep learning yang merupakan salah satu metode implementasi dari machine learning.  Dalam penelitian ini, digunakan metode Convolutional Neural Networks (CNN) dengan arsitektur ResNet-50 dan DenseNet-121. Data yang digunakan dalam penelitian ini diambil dari DIARETDB1 yang merupakan online database yang berisi gambar fundus. Selanjutnya, dilakukan tahap preprocessing pada citra untuk meningkatkan kinerja model seperti mengambil green channel dan menerapkan inverted green channel, mengubah citra warna menjadi grayscale, dan menerapkan Contrast Limited Adaptive Histogram Equalization (CLAHE) untuk penyeragaman kontras pada citra. Hasil penelitian ini menunjukkan bahwa model ResNet-50 lebih baik dibandingkan DenseNet-121 dalam mendeteksi DR. Hasil terbaik dari beberapa kasus testing model ResNet-50 yaitu accuracy, precision, dan recall masing-masing sebesar 92,2%, 93,6%, dan 92,6% dengan running time untuk training selama 6 menit 21,296 detik dan testing selama 1,174 detik.
ABSTRACT
Diabetic Retinopathy (DR) is a long-term complication of Diabetes Mellitus (DM) that affects vision because of the presence of microvascular retinal. This can result in visual impairment and blindness if treated late. DR can be detected by examining fundus images. One approach to detecting DR in fundus images is the deep learning approach which is one of the methods of implementing machine learning. In this study, the Convolutional Neural Networks (CNN) method is used with the ResNet-50 and DenseNet-121 architectures. The data used in this study were taken from DIARETDB1, which is an online database that contains fundus images. Then, pre-processing stage is carried out on the fundus image to improve model performance such as selected the green channel from the images and inverted it, converted the images into grayscale images, and applied Contrast Limited Adaptive Histogram Equalization (CLAHE) for uniform contrast in the images. The results of this study indicate that the ResNet-50 model is better than DenseNet-121 in detecting DR. The best results from several cases testing the ResNet-50 model are accuracy, precision, and recall of 92.2%, 93.6%, and 92.6% respectively with running time for training for 6 minutes 21.296 seconds and testing for 1.174 seconds.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ikhwanul Ghazy Dzakwan
Abstrak :
ABSTRAK
Padatahun 2007, Daerah Khusus Ibukota (DKI) Jakarta mengalami banjir besar yang merendam hampir 60% wilaya DKI Jakarta, yang salah satunya disebabkan oleh curah hujan yang tinggi. Dua bulan setelah kejadian tersebut, Gubernur DKI Jakarta menyatakan ibukota dalam kondisi kejadian luar biasa (KLB) demam berdarah. Dari 2 kejadian tersebut, terdapat indikasi kasus demam berdarah dengue(DBD) erat kaitannya dengan cuaca. DBD adalah penyakit yang disebabkan oleh virus dengue dan disebarkan melalui gigitan nyamuk aedes aegepty dan aedes albopictus betina yang terinfeksi virus dengue. Penyakit ini dapat menyerang manusia di segala rentang umur. Sejak Januari hingga Maret 2020, Dinas Kesehatan Pemerintah Provinsi DKI Jakarta mencatat terdapat 971 kasus DBD. Deteksi dini terkait kejadian DBD dibutuhkan agar berbagai pihak terkait dapat mengambil langkah-langkah antisipasi sedini mungkin. Ilmu matematika dapat berperan dalam membantu deteksi dini kejadian DBD di DKI Jakarta, salah satunya menggunakan sistem klasifikasi dengan berbasis artificial intelligence. Random forest classification merupakan salah satu bentuk machine learning, yang juga merupakan bagian dari artificial intelligence, yang dikenalkan oleh Breiman pada tahun 2001 melalui penelitiannya dengan metode ensemble. Setiap decisiontree pada random forest memberikan hasil klasifikasi dan menggunakan sistem suara terbanyak (majority vote) untuk menentukan hasil akhir dari klasifikasi random forest. Breiman dalam penelitiannya juga menunjukkan kelebihan random forest yang antara lain memiliki error lebih rendah dibandingkan metode lain yangsejenis dan dapat mengatasi data train yang berukuran besar secara efisien. Analisis klasifikasi kasus DBD dalam kaitannya dengan data klimatologi dilakukan dengan pendekatan random forest pada skripsi ini. Data insiden DBD, jumlah penduduk, dan data klimatologi berupa curah hujan, temperatur, dan kelembapan tahun 2008-2017pada tiap Kota di DKI Jakarta (kecuali Kepulauan Seribu) digunakan pada skripsi ini. Random forest diimplementasikan untuk melakukan klasifikasi tingkat kewaspadaan kasus DBD dalam tiga jenis kategori, yaitu: aman, waspada, danawas. Hasil implementasi algoritma random forest dalam membangun model klasifikasi tingkat kewaspadaan kasus DBD untuk Kota Jakarta Timur, Jakarta Utara, Jakarta Selatan, Jakarta Barat, dan Jakarta Pusat di skripsi ini menghasilkan nilai akurasi secara berurut yaitu 93,41%, 89,01%, 83,52%, 82,42%, dan 80,22%.
ABSTRACT
In 2007, the capital city DKI Jakarta had one of the worst floods, that submerged nearly 60% of the area. One of the causes was a heavy rainfall. Two months after the incident, Two months after the incident, the Governor of DKI Jakarta stated that the capital city was in an outbreak of dengue fever. From these two incidents, there are some indications of dengue hemorrhagic fever cases related to the weather. DHF is a disease caused by the dengue virus and spreads by the bite of female Aedes Aegepty and Aedes Albopictus mosquitoes thathad been infected with the dengue virus. This disease can affect humans in any kind of age. From January to March 2020, the government health office of DKI Jakarta reported 971 cases of dengue fever. Early detection related to the incidence of DHF is needed so that the preventive action can be done as early as possible. Mathematics helps a lot to detect a dengue fever in DKI Jakarta earlier using a classification system based on artificial intelligence. Random forest is one of the machine learning methods, found by Breiman in 2001 through his research with an ensemble method. Every decision tree in random forest provides classification results, using the majority vote system to determine the final results of the random forest classification. Breiman also mentioned the advantages of this method which are having fewer errors and efficiently resolving a bigger size of the train data. Analysis of the classification of DHF cases in relation to climatological data was carried out using the random forest approach in this research. DHF incidence data, population, and climatological data in the form of rainfall, temperature and humidity from 2008 -2017 in each city in DKI Jakarta (except Kepulauan Seribu) are used in this research. Random forest is implemented to classify the alertness level of DHF cases into three categories, namely: safe, nearly safe, and not safe. The results of the implementation of the random forest algorithm in building a classification model for the alertness level of dengue cases for East Jakarta, North Jakarta, South Jakarta, West Jakarta and Central Jakarta in the form of accuracy values are 93.41%, 89.01%, 83 ,52%, 82.42%, and 80.22%.
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ma`da Fatimah
Abstrak :
Pada skripsi ini dibahas model matematika yang menggambarkan transmisi kebiasaan merokok di antara populasi dengan mempertimbangkan efek dari kampanye media. Model ini mempertimbangkan efek kampanye media untuk merangsang seseorang menjadi non-perokok, baik sementara atau permanen. Model dibentuk dengan pendekatan sistem persamaaan diferensial biasa non-linier berdimensi lima. Model yang dibangun kemudian dianalisis secara analitik dan numerik. Kajian analitik yang dilakukan adalah proses nondimensionalisasi, analisis eksistensi dan kestabilan titik keseimbangan, menghitung nilai basic reproduction number (R0), dan analisis bifurkasi. Dihasilkan bahwa titik keseimbangan bebas rokok (SFE) stabil secara lokal ketika (R0 < 1), sementara itu selalu ada titik keseimbangan endemik ketika (R0 > 1). Model ini juga menunjukkan adanya bifurkasi mundur pada saat R0 = 1. Kemudian, dilakukan kajian numerik untuk mendukung hasil dari kajian analitik sebelumnya berupa analisis sensitivitas dan elastisitas R0 dan simulasi autonomous. Beberapa simulasi numerik juga diberikan untuk mendukung hasil dari kajian analitik ......In this thesis discussed a mathematical model which describe the transmission of smoking habit among population considering the effect of the media campaign. This model was taking into account the effect of the media campaign to stimulate an individual to be a non-smoker, whether it’s temporary or permanent. The model is formed by the fivedimensional nonlinear ordinary differential equation approach. The constructed model is then analyzed analytically and numerically. The analytical study is a nondimensionalization process, an analysis of the existence and stability of the equilibria, calculating the value of textitbasic reproduction number (R0) and the bifurcation analysis. Generated that smoking-free equilibrium(SFE) is locally stable when the basic reproduction number (R0 < 1), while it always exists an endemic equilibrium point when R0 > 1. This model also indicates the presence of backward bifurcation at R0 = 1. Sensitivity analysis on R0 indicates the potential of a media campaign to help the government to reduce the spread of smoking among the population. Some numerical simulations for supporting the analytical is also given.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>