Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Batubara, John E.
"ABSTRAK
Dewasa ini mikrooptika telah berkembang sebagai salah satu bagian dalam bidang optoelektronika, khususnya dalam sistem komunikasi fiber optik dan sistem pencitraan. Diantara komponen-komponen tersebut, lensa mikro dengan index bias terdistribusi (Distributed-Index = DI) sedang dikaji sebagai komponen dalam teknologi maju. Demikian juga untuk mewujudkan rangkaian terpadu optis. peraiatan "stacked planar optics" dengan lensa mikro sebagai elemen pokok akan menjadi pilihan utama. Dengan demikian suatu penelitian dalam karakterisasi komponen-komponen mikrooptik merupakan hal yang esensial untuk menyempurnakan proses fabrikasi komponen-komponen tersebut.
Beberapa penelitian pada metoda karakterisasi elemen-elemen mikrooptik telah dilakukan, namun penyempurnaan dan pengembangan lanjutan masih diperlukan. Dengan demikian, tujuan penelitian ini adalah untuk mengembangkan metoda karakterisasi yang lebih menyeluruh untuk komponen-komponen mikrooptik. Dalam penelitian ini, diajukan suatu teorema mengenai perambatan moda di dalam fiber optik dan lensa mikro. Teorema tersebut diuji dengan berbagai percobaan experimental dengan menelaah pola medan jauh dari keluaran fiber optik dan lensa mikro.
Selanjutnya, pengkajian transmisi citra oleh fiber optik ber-index langkah (SI) dikembangkan dengan "pulsed modulated transmission". Teknik yang diajukan adalah pemanfaatan sepasang celah untuk mereduksi pengaruh sinar-sinar miring dalam transmisi citra.
Karakteristik pemfokusan lensa-lensa mikro DI juga telah ditelaah dengan teknik experimental berdasarkan metoda deviasi berkas cahaya pada pola medan jauh lensa mikro. Teknik ini digunakan untuk menentukan parameter pemfokusan lensa mikro silindris. Di samping itu, aberasi geometrik lensa mikro planar telah dipelajari dengan teknik tersebut. Aberasi gelombang untuk melengkapi karakteristik pemfokusan lensa telah Pula ditelaah dengan interferometer Mach-Zehnder. Teknik interferometrik yang diajukan dibandingkan pula dengan mikroskop interferensi dan persesuaian hasil yang diperoleh dengan kedua teknik tersebut membuktikan validitas dari teknik yang diajukan.
Konsep ruang fasa yang sekarang dikembangkan dalam studi pemanduan gelombang optis diperluas dalam penelitian ini untuk mengevaluasi parameter pemfokusan lensa mikro silindris. Perbandingan nilai parameter pemfokusan yang diperoleh dari pengukuran dan dari teori memberikan suatu persesuaian yang baik.
Untuk menelaah kelayakan lensa mikro planar sebagai elernen optik telah dirancang dan dibuat dua contoh rangkaian mikrooptik, "fiber coupler" dan "branching circuit". Hasil-hasil meriyeluruh dari penelitian ini menunjukkan bahma komponen mikrooptik dan evaluasinya akan terpakai sangat luas dalam bidang optoelektranika dan banyak cabang aplikasinya.

Abstract
In the last ten years microoptics have been developed progressively in the field of optoelectronics such as optical fiber communication and optoelectronic imaging systems. In particular, distributed-index micro lens and optical fiber components are being utilized as components in advanced optoelectronic technologies. Also for realizing advanced optical integrated circuits, a stacked planar optics with micro lens as main element is considered to be a viable candidate. Therefore a study on the characterization of micro optic components is essential for improving fabrication processes of such components.
Some studies have been conducted on the methods for characterizing micro optic elements, but those improvement and further development still in need. The purpose of this study is, therefore, to develop a more comprehensive characterizing method for these micro optic components. In this research work a theorem on mode propagation in optical fiber and micro lens was proposed. The theorem was then verified by various experimental treatments investigating the far field pattern from the output of optical fiber and micro lens.
Furthermore, the applicability of image transmission by a step-index fiber was developed by a pulsed modulated transmission introducing a pair of slits to reduce the effect of skew rays in the transmitted image.
The focusing characteristic of distributed-index micro lenses was also studied by developing experimental techniques of beam deviation method on the far field pattern from the micro lens. The technique was used to determine the focusing parameter of rod micro lens. On the other hand, the geometrical aberration of planar micro lens haze else been measured by this technique. The wave aberration for completing the focusing characteristic of micro lens has also been studied by utilizing Mach-Zehnder interferometer. The proposed interferometer technique was also compared to the existing interference microscope and the good agreement 1 between those techniques proved the validity of the proposed technique.
The concept of phase space which was developed in the study of optical waveguides is extended in this research work evaluate the focusing parameter of rod micro lens. Comparison of the values of focusing parameter obtained from the measurement and from the theory gave a good agreement.
To study the feasibility of planar micro lens as optical element in imaging systems it has also been designed and constructed two examples of micro optic circuits, fiber coupler and branching circuit. The comprehensive results of this research work point out that the micro optic component and its evaluation will be widely applied in optoelectronics area including many fields of applications."
1987
D1081
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ering Poernomo Setianto
"Tesis ini menguraikan pengembangan dan pengukuran standar frekuensi pada 88 THz yang didasarkan pada garis E dari transisi P(7) CH4. Untuk maksud tersebut kita menggunakan sebuah laser yang frekuensinya digeser menggunakan efek Zeeman untuk mencapai garis E dari CH4.
Laser He-Ne yang digunakan dalam eksperimen ini dibangkitkan menggunakan pelepasan (discharge) RF, yang menghasilkan keluaran laser berderau rendah. Kesesuaian impedansi antara penguatan RF dan laser He-Ne dicapai dengan sangat efektif menggunakan sebuah trafo resonansi.
Dari tiga komponen efek Zeeman hanya komponen a digunakan sebagai garis penguat laser dan dua komponen lainnya 6+ dan 7C ditapis oleh uap Methylbromide dan candela Brewster, sehingga laser RF He-Ne berosilasi pada frekuensi tunggal yang dapat diatur dan keluaran laser berderau rendah.
Untuk meningkatkan rasio SIN dari pendeteksi spektrum garis absorpsi E, telah dikembangkan sistim dispersi tersaturasi menggunakan laser He-Ne bermode ganda. Sistim ini bekerja sebagai pendeteksi heterodyne internal untuk merekam frekuensi denyut (beat). Sistim ini memperbaiki rasio SIN mencapai faktor 4 sampai 5 kali.
Dengan menggunakan sistim tersebut telah dilakukan pengamatan ketergantungan frekuensi pusat garis E terhadap parameter kerja seperti: power laser, lebar modulasi laser dan tekanan methane. Pergeseran frekuensi diukur menggunakan sistim Offset lock dengan komponen pusat dari hyperfineyang terurai sebagai referensi yang stabil. Diperoleh untuk perubahan parameter kerja tertentu pergeseran frekuensi pusat garis E dibatasi antara 100 dan 150 Hz. Juga telah diamati pergeseran frekuensi yang terbesar adalah karena tekanan methane.
Untuk pengukuran frekuensi absolut dan garis E, laser Zeeman He-Ne distabilkan menggunakan sebuah sistim deteksi ganda yang unik, yang telah dikembangkan dalam percobaan Penentuan frekuensi absolut garis E dilakukan menggunakan rantai pengukuran frekuensi yang ber-phasa koheren, yang dihubungkan dengan jam Cs dari PTB. Sebagai hasil dari pengukuran ini diperoleh frekuensi pusat garis E :
vE = 88 373 149 028 553 ± 230 Hz, ini menunjukkan penambahan ketelitian yang cukup berarti terhadap pengukuran sebelumnya.

This thesis describes the development and measurement of a frequency standard at 88 THz, based on E-line of P(7) transition of CI-4 For this propose we use a He-Ne laser tuned by Zeeman effect to E-line.
The He-Ne laser used in this experiment is excited by RF-discharge, which gives a low noise laser output. The matching condition of the impedance between RF power amplifier and the He-Ne laser is achieved more effectively by using a resonator transformer.
From three components of the Zeeman effect only 6 component is used as the laser gain line in this experiment and the two a+, n components are suppressed by methylbromide vapour and Brewster window respectively, so that the E-line RF He-Ne laser oscillates at a single adjustable frequency with a low noise laser output.
To enhance the SIN ratio of the detection of the E-line absorption spectrum, a saturated dispersion system using a double mode RF He-Ne laser have been studied and developed. This system works as an ideal internal heterodyne detector for recording the beat frequency. As a result the SIN ratio is improved by a factor of 4 to 5 times.
Employing this detection system has been carried out to study the dependency of the E-line center frequency on the operating parameters such as the laser power, the laser modulation width and the methane pressure. The frequency shift was measured by using an offset lock system with respect to the center component of the hyperfine resolved F2 -line as a stable reference. It was found that within the variation range of the operatings parameters the center frequency shift of the E-line, was limited between 100 and 150 Hz. It was also observed that the largest frequency shift was due to methane gas pressure.
For measurement of the absolute frequency of the E-line, the Zeeman tuned He-Ne laser was stabilized using an unique double detection system, which was developed in this work. The determination of the absolute frequency of the E-line was carried out using a phase coherent frequency measurement chain linked to a Cs clock of PTB. As the result of this measurement the E-line center frequency of CH4 was found to be:
vE = 88 373 149 028 553 ± 230 Hz and this result shows a substantial increasing accuracy over the previous measurements.
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
D370
UI - Disertasi Membership  Universitas Indonesia Library
cover
Basrul Bahar
"ABSTRAK
Telah dibuat suatu sistem Magneto Optical Trap untuk mendinginkan dan memperangkap atom gas yang terdiri dari sepasang kumparan anti Helmholtz dengan 3 pasang cahaya laser pendingin yang dihasilkan dari satu laser dioda, dan satu laser lainnya digunakan sebagai laser pemompa-kembali (repumping laser). Atom Cs diletakkan dalam satu ruang oakum tinggi yang berada di tengah-tengah kumparan anti Helmholtz. Dengan bantuan sistem ini telah dapat diperangkap sekitar 107 atom Cs dan didinginkan sampai temperatur beberapa μK. Gumpalan awan atom ini dapat diamati dan foto luminesensi yang terjadi dalam awan yang didinginkan tersebut.
Sifat-sifat dinamika awan atom Cs ini dapat dipelajari dengan mematikan atau mengubah frekuensi laser pendingin dan laser pemompa-kembali secara terprogram dan dengan mengamati luminesensinya. Dengan cara ini dapat dipelajari gejala transien, dan penjarangan populasi yang menyertainya.
Selanjutnya telah dilakukan pengukuran temperatur dengan menggunakan metoda balistik yang sudah lazim dilakukan orang. Disamping itu telah dikembangkan cara pengukuran temperatur awan atom yang lebih teliti dengan menggunakan osilasi posisi dari awan atom dengan menggunakan medan magnet dari kumparan Anti Helmhotz yang berosilasi. Temyata metoda ini lebih dapat diandalkan dan hasilnya konsisten dengan metoda yang konvensional.

ABSTRACT
A Magneto Optical Trap has been built consisting a pair of Anti Helmholtt coils with three pairs of cooling laser beams produced by one laser diode, and the other one for repumping. The Cs atom is placed in a high vacuum chamber located in the center of the anti Helmholtz coils. In this system about 107 Cs atoms have been trap and cooled to a temperature of a few μK. The cloud can be observed from the luminescence of the cooled atoms.
The dynamical properties of the cooled Cs atom has been studied by turning off or changing the frequency of the cooling laser and the repumping laser precisely for a short period and observing the luminescence of the cloud. In this way the characteristics of the transient phenomena of the cloud, such as the build up time, the pumping time and the density of the cooled Cs atoms can be studied.
The temperature of the cooled Cs atom in the cloud has been determined using the well known ballistic method. A new method for the measurement of the temperature of the Cs atoms has been developed. In this new method the position of the cloud is oscillated by a uniform oscillating magnetic field produced from a sinusoidal modulation added to the one of anti Helmholtz coils. The results turns out to be more reliable and the measurement result is consistent with the conventional method.
"
Depok: Fakultas Teknik Universitas Indonesia, 1997
D78
UI - Disertasi Membership  Universitas Indonesia Library
cover
Mohammad Hafidz
"ABSTRAK
Pandu gelombang optik tergandeng telah digunakan secara luas pada sistem komunikasi serat optik sebagai piranti pencabang optik seperti penggandeng arah, demultiplexer, tapis, saklar dan pembagi daya optik. Pandu gelombang tergandeng paralel dengan bentuk yang asimetris dan bentuk tirus/menyempit diketahui mempunyai sifat gandengan yang menarik dan dapat digunakan sebagai piranti pencabang apabila kondisi kerja tertentu dipenuhi. Sifat-sifat gandengan pada pandu gelombang tergandeng dianalisa secara teoritis dengan menggunakan metoda interferensi dua moda dari gelombang yang terpandu. Pemindahan daya secara total pada penggandeng arah tidak dapat terjadi kecuali kecepatan phasa atau tetapan propagasi dari kedua pandu gelombang tersebut sesuai/cocok. Simulasi sifat-sifat gandengan dilakukan dengan Metoda Propagasi Berkas Cahaya. Hasil analisa menyatakan bahwa jamak gandengan dari penggandeng arah simetris akan berkurang dengan bertambahnya panjang gelombang, dan akan berkurang dengan bertambahnya perbedaan indeks bias antara inti dan selubung. Selain itu efisiensi pemindahan days pada pandu gelombang paralel a-simetris akan menurun apabila derajat ketidaksimetrian bertambah. Sifat-sifat ini selanjutnya dapat diterapkan pada sistem pandu gelombang jamak paralel. Selanjutnya berdasarkan teknik interferensi dua moda kita dapat menganalisa karakteristik pemindahan daya dari penggandeng 3-pandu gelombang dan 5-pandu gelombang. Dalam disertasi ini diusulkan struktur baru pembagi daya 1x5 dengan struktur pandu gelombang paralel a-simetris yang mempunyai pembagian daya yang merata dan dapat dioperasikan pada daerah panjang gelombang 1.3 - 1.55 arm.
Analisa sifat-sifat gandengan jugs telah dilakukan untuk struktur pandu gelombang tergandeng berbentuk tirus/menyempit. Telah dianalisa sifat gandengan dari pandu gelombang tergandeng berbentuk tirus yang simetris dan a-simetris dengan menggunakan BPM. Telah didapat hasil yang baru, yaitu bahwa penggandeng arah dengan bentuk tirus yang simetris dapat digunakan sebagai penggandeng 3-dB dengan pita panjang gelombang yang luas. Struktur ini sangat efisien sebagai pembagi daya karena ukurannya yang kecil yang disebabkan oleh jarak gandengan yang pendek dan dipertnhankannya pembagian daya yang tetap merata sepanjang arah penjalarannya. Berdasarkan hasil tersebut telah diusulkan bentuk baru pencabang-Y yang mempunyai sifat pembagian daya yang merata yang ditunjukkan oleh basil simulasi BPM. Kedua piranti tersebut telah dibuat dengan teknik Sputtering-RF pada bahan dasar SiO2. Piranti-piranti ini dapat dikembangkaa sebagai pembagi daya IxN, yang dapat digunakan pada sistem komunikasi serat optik WDM dan sistem pemroses sinyal.

ABSTRACT
Optical coupled waveguide has been widely used in optical communication systems as a branching device such as directional couplers, de-multiplexer, filter, switching device and power divider. Parallel coupled waveguide with asymmetrical structure and tapered form are known to have interesting coupling characteristics and can be utilized as branching devices when certain working requirements are met. The coupling properties in coupled waveguides are analyzed theoretically on the basis of two modes interference effect of the propagating waves. Complete power transfer in directional coupler can not be realized, even if the phase velocity or propagation constant of the two waveguide are matched. Simulation of coupling properties is performed by using Beam Propagation Methods. As a result of the analysis, it is shown that the coupling length of symmetrical directional coupler decreases as the wavelength increases and increases as the index difference between core and cladding decreases. On the other hand, in the parallel asymmetrical structure the power coupling efficiency decreases as the asymmetry of the structure increases. These properties also can be extend applied to multi-parallel wave guide systems. Based on modes interference techniques we can analyze power transfer characteristics of 3-guides and 5-guides couplers. In this dissertation we proposed a novel 1x5 power divider based on asymmetrical parallel coupled waveguides structure which has an evenly power dividing ratio , and can be operated at the wavelength range of 1.3 - 1.55 um.
Analysis of the coupling properties has also been carried out for the tapered-form coupled waveguide structure. We have analyzed coupling characteristics of both asymmetrical and symmetrical tapered-form waveguides by using BPM. We have discovered a new result that the directional coupler with symmetrical tapered-form can be used as a 3-db coupler with a broadband characteristic. This structure is very efficient as a power divider because of its small size due to short coupling length and even power dividing ratio along the propagation direction. Based on this new result obtained from our analysis, we further proposed a novel structure of Y-branch coupler waveguide, which excellent power dividing properties are exhibited by our BPM simulation. Both devices have been fabricated by RF-sputtering technique on SiO2 based material. These devices can be developed as an lxN power splitter, which can be applied in a wide WDM optical communication systems and Signal processing systems.
"
Depok: Fakultas Teknik Universitas Indonesia, 1993
D139
UI - Disertasi Membership  Universitas Indonesia Library
cover
Pardede, Marincan
"In spite of abundant experimental evidences supporting the viability of the laser induced shock wave plasma model for the explanation of the important features ofthe plasma and the associated spectroscopic characteristics, a controversy on the atomic excitation mechanism in the plasma has remained to be completely resolved. In this study the contributions of the shock wave model and two other most popular models, the electron-ion recombination model and thc electron collision model were thoroughly investigated. For that purpose, a special technique has been developed for the direct detection of the charge current in conjunction with plasma emission measurement dining the laser plasma generation and expansion. The current detection was performed by placing a partially transmitting metal mesh electrode at a distance in front of the sample surface with the sample target sewing as the counter electrode. The electric Held between the mesh and sample surface was set up and varied by applying a variable DC voltage (0-400 Volt) between them. The laser plasma was generated by a YAG laser (64 ml, 8 ns) tightly focused on a Cu target through the mesh electrode in low-pressure surrounding gas. It was found that the charge current time profiles obtained at various gas pressures invariably exhibit a lack of consistent correlation with the emission time profile of the plasma throughout most of the emission period. The result of this study has thus practically eliminated any significant roles ofthe electron-ion recombination and electron collision models in the excitation process. We are therefore led to conclude that the shock wave model proposed earlier is most plausible for the consistent explanation of the secondary plasma emission, while the other two models may have some contribution only at the very initial stage ofthe secondary plasma generation."
Depok: Fakultas Teknik Universitas Indonesia, 2002
D1367
UI - Disertasi Membership  Universitas Indonesia Library
cover
Rinda, Hedwig
"ABSTRACT
An comprehensiove study has been carried out for the study and extension of lases induce shock wave plasma spectroscopy (LISPS) application to non metalic soft and hard samples. For this purpose, a series of experiments were conducted to investigate the dynamical process taking place in the laser plasma generated by a high power and short pulse laser irradiations on a non metal soft and hard samples it was found that in the case of non metal soft sample, the ablated atoms failed to induce a visible plasma at the surface of the target however, it became possible, after a few laser shots depending on the target layer thickness, to generate the sock wave plasma emitting the characteristic spectral line of the target material.
Another related phenomenon studied in this experiment is the pre-irradiation effect pbserved on a non metal hard sample such as quartz sample, which was characterized by absence of secondary plasma at athe initial shots. The disappearance of this effect at a later stage was found to be connected with the appearance of a crater of appropriate depth on the sample surface created by iniatial repeated irradiations on the sample surface. The plasma produced thereafter exhibited typical features of a secondary plasma. Further experiment employing aaratificial ring crater on the sample surface has eliminated the pre-irraduation effect completely, and has thus demonstrated that it is the confinenement effect of the crater which was solely responsible for the generation of secondary plasma from the non metal hard tearget. This conclusion is ini confrormation with the shock wave proposed earlier.
These experimental studies have thus considerably substantiated our understanding of the process of secondary plasma generatuion. In turn, this result helps to improve the quality and extend the scope of LISPS applications in the future"
2002
D1364
UI - Disertasi Membership  Universitas Indonesia Library
cover
Rinda, Hedwig
"ABSTRACT
An comprehensiove study has been carried out for the study and extension of lases induce shock wave plasma spectroscopy (LISPS) application to non metalic soft and hard samples. For this purpose, a series of experiments were conducted to investigate the dynamical process taking place in the laser plasma generated by a high power and short pulse laser irradiations on a non metal soft and hard samples it was found that in the case of non metal soft sample, the ablated atoms failed to induce a visible plasma at the surface of the target however, it became possible, after a few laser shots depending on the target layer thickness, to generate the sock wave plasma emitting the characteristic spectral line of the target material.
Another related phenomenon studied in this experiment is the pre-irradiation effect pbserved on a non metal hard sample such as quartz sample, which was characterized by absence of secondary plasma at athe initial shots. The disappearance of this effect at a later stage was found to be connected with the appearance of a crater of appropriate depth on the sample surface created by iniatial repeated irradiations on the sample surface. The plasma produced thereafter exhibited typical features of a secondary plasma. Further experiment employing aaratificial ring crater on the sample surface has eliminated the pre-irraduation effect completely, and has thus demonstrated that it is the confinenement effect of the crater which was solely responsible for the generation of secondary plasma from the non metal hard tearget. This conclusion is ini confrormation with the shock wave proposed earlier.
These experimental studies have thus considerably substantiated our understanding of the process of secondary plasma generatuion. In turn, this result helps to improve the quality and extend the scope of LISPS applications in the future"
2002
D33
UI - Disertasi Membership  Universitas Indonesia Library
cover
Pardede, Marincan
"ABSTRACT
In spite of abundant experimental evidences supporting the viability of the laser
induced shock wave plasma model for the explanation of the important features ofthe
plasma and the associated spectroscopic characteristics, a controversy on the atomic
excitation mechanism in the plasma has remained to be completely resolved. In this
study the contributions of the shock wave model and two other most popular models,
the electron-ion recombination model and thc electron collision model were
thoroughly investigated. For that purpose, a special technique has been developed for
the direct detection of the charge current in conjunction with plasma emission
measurement dining the laser plasma generation and expansion. The current detection
was performed by placing a partially transmitting metal mesh electrode at a distance
in front of the sample surface with the sample target sewing as the counter electrode.
The electric Held between the mesh and sample surface was set up and varied by
applying a variable DC voltage (0-400 Volt) between them. The laser plasma was
generated by a YAG laser (64 ml, 8 ns) tightly focused on a Cu target through the
mesh electrode in low-pressure surrounding gas. It was found that the charge current
time profiles obtained at various gas pressures invariably exhibit a lack of consistent
correlation with the emission time profile of the plasma throughout most of the
emission period. The result of this study has thus practically eliminated any
significant roles ofthe electron-ion recombination and electron collision models in the
excitation process. We are therefore led to conclude that the shock wave model
proposed earlier is most plausible for the consistent explanation of the secondary
plasma emission, while the other two models may have some contribution only at the
very initial stage ofthe secondary plasma generation.
Key words: charge current, shock wave, electron-ion recombination and electron
collision.
Praiseci is to the Lord for He is my reason in everything I do.
This manuscript is never be done without the guidance by Pro£ Tjia May On, to
whom I am extremely grateful. He also provided the support without which this thesis
would not possible. He is more than just a teacher for me for his words have deeply
touched me. Moreover, he also introduced me that knowledge is something we should
share among others and to improve the education in my country.
I am also indebted to Prof. Kiichiro Kagawa at the Fukui University for providing
the atmosphere and the physical resources to make thesis writing in these times of fast
paced research. I am also thankful for the opportunity which is given to me to join
research together with him in his laboratory in Japan.
Extra special thanks go to Dr. Hendrik Kurniawan for providing me with
encouragement and support for this project. He is the first one who encouraged me to
take Doctor Cotuse Program which seemed impossible at the beginning. His
companion during research at Applied Spectroscopy Laboratory at University of
Indonesia is a leading experience in research for me.
I am particularly grateful to the excellent team of referees who provided critical
comments on this thesis. Their feedback was a great benefit to me.
I gratefully acknowledge all my colleagues: Rinda Hedwig, Mangasi A.
Marpaung, Hery Suyanto, MM. Suliyanti, Wahyu S. Budi, and Emon in Applied
Spectroscopy Laboratory at University of Indonesia, for their assistance and support
during my study.
My never-ending thanks to my beloved family, especially to my parents who
exhibited thoughtful patience over extended periods of time when I seemed to be
invisible. Thanks also to Loviana who helped me in all situations which I no longer
can resist by myselfl
Finally, I apologize to all those who helped that I did not acknowledge specifically.
I know there were many and greatly appreciate your assistance.
August, 2002
Author
"
2002
D268
UI - Disertasi Membership  Universitas Indonesia Library
cover
Marpaung, Mangasi Alion
"A comprehensive study has been made on the dynamical process-taking place in the laser-plasma generation induced by a TEA CO2 laser bombardment on metal target and non-metal target from low to high pressures surrounding gas. In the case of metal target, pure zinc plate was used as a target and bombarded with 400-mJ-laser pulse energy. Dynamical characterization of plasma expansion and excitation were examined in detail both for target atomic emission (Zn I 481.0 nm) and gas atomic emission (He 1 587.6 nm) by using a unique time-resolved spatial distribution measurement and conventional emission spectroscopic detection method. The results showed that the plasma expands and develops with time. The mechanism of plasma generation can be classified into three cases depending on .the surrounding gas pressures; target shock wave plasma in the pressure range between 2 Ton and 20 Ton, coupling shock wave plasma in the pressure range between 50 Torr and 200 Torr and gas break down shock wave plasma in the pressure range between 200 Ton and I atm. In all cases in the laser-plasma generation under TEA CO2 laser bombardment on metal target, shock wave process always plays important role for exciting the target atoms and gas molecules.
In the case of non-metal target, a museum glass was used as a target and bombarded with a 400 nd laser pulse energy. By using the conventional emission spectroscopic detection method, namely temporally and spatially integrated and time-resolved spatially integrated of plasma emission, it was shown that the plasma mainly consists of target atomic emission. Only weak gas atomic emission intensity could be observed even at I atm of surrounding gas pressure. These results indicate that the gas breakdown is not a major process responsible to the plasma formation even at high pressure surrounding gas. Shock wave process was considered as an important role in this plasma formation. By the use of shadowgraph technique to detect the density jump signal due to the shock wave front involving a He-Ne laser as a probe light, simultaneous detection of the shock wave front and the emission front was successfully implemented. The result showed that at the initial stages of plasma expansion shock wave front and emission front coincide and move together with time. At the later stages of plasma expansion the two fronts became separate with the emission front left behind the shock wave front. These results are completely coinciding with the shock wave plasma model. Unfortunately, in this experiment we succeed to detect the density jump signal only for high pressure surrounding gas, above 100 Torr. At the pressures lower than 100 Torr the density jump signal was very weak and it is difficult to distinguish with the noise including in the signal.
The other important experimental results that support the shock wave plasma model were also obtained in this experiment, namely the coincidence of emission front regardless of their atomic weight and sub-target effect. By using lead glass as a sample, which contain Pb, Si, and Ca, it was confirmed that the emission front of the Pb I 450.8 nm, Si 1288.2 nm and Ca I 422.6 nm almost coincide regardless of their atomic weight. This result also supports the shock wave plasma model because, by the stagnation of the propelling atoms, the front position of the all atoms coincides regardless of its mass. In the case of sub-target effect, confirm that plasma could be produced even for soft target if sub-target is set behind the sample. In this case we use a quartz sample as a sub-target and a vinyl tape was attached to the quartz sample as a target. The TEA CO2 laser bombardment was used at 150 ml and at 1 atm of air. The main role of the subtarget is to produce a repulsion force for atom gushing with high speed. For shock wave, high speed is necessary condition to compress the gas.
Coincidence of the movement of the shock wave front and the emission front in the initial stages of plasma expansion is a direct proof of the shock wave plasma model. By improving the detection technique of the density jump associated with the shock wave, the correlation between the shock wave front and the emission front was examined in detail. For this purpose rainbow interferometer system, which has higher sensitivity compared with the shadowgraph technique, was used to detect the density jump signal. We succeed to realize simultaneous detection of shock wave front and emission front from 3 Ton until 1 atm of air when a quartz sample is bombarded with a 600 nil TEA C02 laser. In all pressure that were examined, the shock wave front and the emission front always coincide and move together with time in the initial stages and separate at the later stages with emission front left behind the shock wave front. The coincidence of the shock wave front and emission front and move together with time at the initial stages of plasma expansion was also obtained by using ruby as a sample at 10 Torr and 100 Ton of air as well as with museum glass at the same laser pulse energy.
Another important experimental result obtained in this experiment is that confirmation of the coincidence of the target atomic emission front and gas atomic emission front and density jump. This confirmation was obtained by examined a Quartz sample in 50 Ton of helium and a zinc sample in 100 Ton of helium. This result strongly supports the shock wave plasma model because, in ordinary shock tube experiment, gas emission takes place just behind the shock wave.
From a practical point of view of direct microanalysis for spectrochemicaI application of alloy metal samples such as brass, selective vaporization effect was also studied. The results showed that even for Nd-YAG laser with short pulse duration (8 ns) and high power density (30 GWcm 2), selective vaporization take place to a certain extend. It was demonstrated in this experiment that selective vaporization is enhanced if the laser irradiation was repeated on the same spot of sample surface. Meanwhile it was also shown in this experiment that the effect of selective vaporization could be significantly suppressed by increasing the surrounding gas pressure from 2 Toff to around 50 Torr of air."
Depok: Fakultas Teknik Universitas Indonesia, 2000
D234
UI - Disertasi Membership  Universitas Indonesia Library
cover
Marpaung, Mangasi Alion
"ABSTRACT
A comprehensive study has been made on the dynamical process taking place in the laser-plasma generation i.nduced by a TEA CO2 laser bombardment on metal target and non-metal target Eom low to high pressures surrounding gas. ln the case of metal target, pure zinc plate was used as a target and bombarded with 400 ml laser pulse energy. Dynamical characterization of plasma expansion and excitation were examined in detail both for target atomic emission (Zn I 481.0 nm) and gas atomic emission (He I 587.6 nm) by using an unique time-resolved spatial distribution measurement and conventionalemission spectroscopic detection method. The results
showed that the plasma expands and develops with time. The mechanism of plasma generation can be classified into three cases depending on the surrounding gas pressures; target shock wave plasma in the pnessure range between 2 Torr and 20 Torr, coupling shock wave plasma in the pressure range between S0 Torr and 200 Torr and gas ?break down shock wave plasma in the pressure range between 200 Torr and 1 atm. In all cases in the laser-plasma generation under TEA CO; laser bombardment on metal target, shock wave process-always plays important role for
exciting the target atoms and gas molecules.
ln the case of , non-metal target, a museum glass was used as a target and bombarded with a 400 mJ laser; pulse energy By using the conventional emission spectroscopic detection method, namely temporally and spatially integrated and time-resolved spatially integrated of plasma emission, it was shown that the plasma mainly consists of target atomic emission. Only weak gas atomic emission intensity could be observed even at 1 atm of surrounding gas pressure. These results indicate that the gas breakdown is not a major process responsible to the plasma formation even at high pressure surrounding gas. Shock wave process was considered as an
important role in this plasma formation. By the use of shadowgraph technique to detect the density jump signal due to the shock wave front involving a He-Ne laser as a probe light, simultaneous detection of the shock wave Bent and the emission iiont was successfully implemented. The result showed that at the initial stages of plasma expansion shock wave 'dont and emission front coincide and move together with time. At the later stages of plasma expansion the two fronts become separate with the emission front left behind the shock wave front. These results are completely coinciding with the shock wave plasma model. Unfortunately, in this experiment we succeed to detect the density jump signal only for high pressure surrounding gas, above 100 Torr. At the pressures lower than 100 Torr the density jump signal was very weak and it is diflicult to distinguish with the noise including in the signal.
The other important experimental results that support the shock wave plasma model were also obtained in this experiment, namely the coincidence of emission iziont regardless of their atomic weight and sub-target effect. By using lead glass as a sample, which contain Pb, Si, and Ca, it was confirmed that the emission front of the Pb 1450.8 nm, Si I 288.2 nm and Ca I 422.6 nm almost coincide regardless of their atomic weight. This result also supports the shock wave plasma model because, by the stagnation of the propelling atoms, the front position of the all atoms coincides regardless of its mass. In the case of sub-target effect, we confirmed that plasma
could be produced even for sch target if sub-target is set behind the sample. In this case we use a sample as a sub-target and a vinyl tape was attached to the quartz sample as a target. The TEA CO2 laser bombardment was used at 150 mJ and at 1 atm of air. The main role ofthe subtarget is to produce a repulsion force for atom gushing with high speed. For shock wave, high speed is necessary condition to compress the gas.
Coincidence of the movement of the shock wave iiiont and the emission front in the initial stages of plasma expansion is a direct proof of the shock wave plasma model. By improving the detection technique of the density jump associated with the shock wave, the correlation between the shockwave fiont and the emission front was examined in detail. For this purpose rainbow interferometer system, which has higher sensitivity compared with the shadowgraph technique, was used to detect the density jump signal. We succeed to realize simultaneous detection of shock wave front and emission front iiom 3 Torr until 1 atm of air when a quartz sample is bombarded with a 600 mJ TEA CO2 laser. In all pressure that were examined, the shock wave front and the emission front always coincide and move together with time in the initial stages and separate at the later stages with emission front left behind the shock wave tiont. The coincidence of the shock wave iiont and emission front and move together with time at the initial stages of plasma expansion was also obtained by using ruby as a sample at 10 Torr and 100 Torr of air as well as with museum glass at the same laser pulse energy."
2000
D1361
UI - Disertasi Membership  Universitas Indonesia Library