Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16 dokumen yang sesuai dengan query
cover
Tambunan, Christine Mangisi Rettauli
Depok: Universitas Indonesia, 2004
S27409
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anas Bachtiar
"Kematian yang disebabkan oleh kanker diperkirakan akan terus meningkat, terutama untuk kanker prostat. Penyakit ini adalah jenis kanker yang paling umum untuk pria di dunia. Jumlah kematian dapat dikurangi dengan deteksi dini menggunakan machine learning. Salah satunya adalah klasifikasi data kanker prostat. Data kanker yang digunakan memiliki berbagai fitur, tetapi tidak semua fitur adalah fitur penting. Dalam penelitian ini, kami menggunakan Support Vector Machine-Recursive Feature Elimination (SVM-RFE) dan One Dimensional Naïve Bayes Classifier (1-DBC) sebagai metode seleksi fitur. Dalam kedua metode itu akan mendapatkan peringkat untuk setiap fitur. Penggunaan kedua metode ini dalam klasifikasi data kanker prostat menghasilkan tingkat evaluasi yang tinggi. Kedua metode ini dapat menghasilkan tingkat akurasi 100%, precision 100%, dan recall 100% pada metode klasifikasi Random Forest. Dan menghasilkan tingkat akurasi 95%, precision 100%, dan recall 94,11% pada metode klasifikasi SVM. Dalam evaluasi tambahan, SVM-RFE memiliki running time lebih rendah dari 1-DBC.

Death caused by cancer is expected to continue to increase, especially for prostate cancer. This disease is the most common type of cancer for men in the world. The number of deaths can be reduced by early detection using machine learning. One of them is the classification of prostate cancer data. Cancer data used has various features, but not all features are essential features. In this study, we use Support Vector Machine-Recursive Feature Elimination (SVM-RFE) and One Dimensional Naïve Bayes Classifier (1-DBC) as a feature selection method. In both methods, it will get a rating for each feature. The use of these two methods in the classification of prostate cancer data produces a high level of evaluation. Both of these methods can produce 100% accuracy, 100% precision, and 100% recall in the Random Forest classification method. And it produces 95% accuracy, 100% precision, and 94.11% recall in the SVM classification method. In the additional evaluation, SVM-RFE has a running time lower than 1-DBC."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darno Raharjo
"[ABSTRAK
Virus dengue terdiri atas 10 protein penyusun yang berbeda dan diklasifikasikan
menjadi empat serotipe utama (DEN 1 ? DEN 4). Penelitian ini dirancang untuk
melakukan pengelompokan terhadap 30 sekuens protein virus dengue yang
diambil dari Virus Pathogen Database and Analysis Resource (ViPR)
menggunakan metode Regularized Markov Clustering (R?MCL) dan untuk
menganalisis hasilnya. Dengan menggunakan program Python 3.4, algoritma
R-MCL diimplementasikan dan menghasilkan 8 kelompok dengan pusat
kelompok lebih dari satu di beberapa kelompok. Banyaknya pusat kelompok
menunjukkan tingkat kepadatan interaksi. Interaksi protein ? protein yang
terhubung padat dalam jaringan cenderung membentuk kompleks protein yang
berfungsi sebagai unit proses biologi tertentu. Hasil analisis menunjukkan hasil
pengelompokan dengan R-MCL menghasilkan kelompok ? kelompok
kekerabatan virus dengue berdasarkan peran yang sama dari protein penyusunnya,
tanpa memperhatikan serotipenya.

ABSTRACT
Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes;Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes;Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes, Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes]"
2015
T44667
UI - Tesis Membership  Universitas Indonesia Library
cover
Eryawan Deise Ulul
"[ABSTRAK
Hierarchical clustering merupakan metode yang efektif dalam membentuk pohon
filogenetik dengan mengetahui matriks jarak antar barisan DNA. Salah satu cara
untuk membuat matriks jarak yaitu dengan cara menggunakan metode -mer.
Kelebihan dari metode -mer yaitu lebih efisien dalam segi waktu. Langkahlangkah
dalam membuat matriks jarak dengan metode -mer dimulai dengan
membentuk -mer sparse matrix dari masing barisan DNA. Selanjutnya,
membentuk -mer singular value vector. Pada tahap akhir yaitu menghitung jarak
antar vektor. Pada tesis ini akan dilakukan analisis terhadap barisan DNA MERSCoV
dengan mengimplementasi Hierarchical clustering menggunakan -mers
sparse matrix sehingga dapat diketahui leluhur dari masing-masing barisan DNA
MERS-CoV.

ABSTRACT
Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV., Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV.]"
2015
T44260
UI - Tesis Membership  Universitas Indonesia Library
cover
Hengki Muradi
"[Salah satu tujuan dalam studi ekpresi gen (DNA/Protein) adalah menemukan subbagian
yang penting secara biologis dan kelompok-kelompok dari gen-gen. Pengelompokan gen tersebut dapat dilakukan dengan metode hirarki maupun metode partisi. Kedua metode pengelompokan dapat dikombinasikan, dimana
dilakukan fase partisi dan hirarki secara bergantian, metode ini dikenal dengan metode Hopach. Tahap partisi dapat dilakukan dengan metode PAM, SOM, atau K-Means. Proses partisi dilanjutkan dengan proses Ordered, baru kemudian dikoreksi dengan proses agglomorative, sehingga hasil pengelompokan menjadi lebih akurat. Dalam menentukan kelompok utama digunakan ukuran MSS (Median Split Silhouette). MSS mengukur homogenitas hasil pengelompokan,
dimana hasil pengelompokan yang dipilih adalah yang meminimumkan MSS. Pada pengelompokan 136 barisan DNA Virus Ebola dari GeneBank. Proses
awalnya dilakukan pensejajaran global, dan dilanjutkan dengan perhitungan jarak genetik dengan menggunakan koreksi Jukes-Cantor. Pada penelitian ini didapat jarak genetik maksimum adalah 0.6153407 sedangkan jarak genetik minimum adalah 0. Selanjutnya matriks jarak genetik dapat dijadikan dasar untuk mengelompokkan barisan-barisan tersebut dengan menggunakan metode Hopach. Pada hasil pengelompokan Hopach-PAM, diperoleh kelompok utama sebanyak 10 kelompok dengan nilai MSS sebesar 0,8873843. Kelompok-kelompok virus ebola dapat diidentifikasikan berdasarkan subspesies dan tahun pertama kali mewabah.
Proses pensejajaran global dan pengelompokan Hopach-PAM menggunakan bantuan program open source R.

One goal in the study of gene expression (DNA/Protein) is finding biologically important subsets and clusters of genes. Clustering these genes can be achieved by hierarchical and partitioning methods. Both clustering methods can be combined, where partition and hierarchy phases can be executed alternately, this method is known as a Hopach method. The partitioning step can be done by the PAM, SOM, or K-Means clustering method. The partition process continued with the process of Ordered, then corrected with agglomorative process, so that the clustminering results become more accurate. The main clusters determine by using MSS
(Median Split Silhouette). MSS is used to measure homogeneity of the clustering result, in which the clustering is selected to minimize its MSS. The clustering procceses of 136 DNA sequences of Ebola virus, are started by performing a global alignment, and continued with the genetic distance calculations using
Jukes-Cantor correction. In this research we found the maximum genetic distance is 0.6153407, meanwhile the minimum genetic distance is 0. Furthermore, the genetic distance matrix can be used as a basis for clustering sequences in Hopach-PAM clustering method. Based on, the clustering results, we obtained 10 major clusters with MSS value of 0.8873843. Ebola virus clusters can be identified by subspecies and the first occoring year of their outbreak. We implemented the global alignment process and Hopach-PAM clustering algorithm using the open source program R.;One goal in the study of gene expression (DNA/Protein) is finding biologically important subsets and clusters of genes. Clustering these genes can be achieved by hierarchical and partitioning methods. Both clustering methods can be combined, where partition and hierarchy phases can be executed alternately, this method is known as a Hopach method. The partitioning step can be done by the PAM, SOM, K-Means clustering method. The partition process continued with the process
of Ordered, then corrected with agglomorative process, so that the clustmineringresults become more accurate. The main clusters determine by using MSS (Median Split Silhouette). MSS is used to measure homogeneity of the clustering result, in which the clustering is selected to minimize its MSS. The clustering procceses of 136 DNA sequences of Ebola virus, are started by performing a global alignment, and continued with the genetic distance calculations using Jukes-Cantor correction. In this research we found the maximum genetic distance is 0.6153407, meanwhile the minimum genetic distance is 0. Furthermore, the genetic distance matrix can be used as a basis for clustering sequences in Hopach-PAM clustering method. Based on, the clustering results, we obtained 10 major clusters with MSS value of 0.8873843. Ebola virus clusters can be identified by subspecies and the first occoring year of their outbreak. We implemented the global alignment process and Hopach-PAM clustering algorithm using the open
source program R., One goal in the study of gene expression (DNA/Protein) is finding biologically
important subsets and clusters of genes. Clustering these genes can be achieved by
hierarchical and partitioning methods. Both clustering methods can be combined,
where partition and hierarchy phases can be executed alternately, this method is
known as a Hopach method. The partitioning step can be done by the PAM, SOM,
or K-Means clustering method. The partition process continued with the process
of Ordered, then corrected with agglomorative process, so that the clustminering
results become more accurate. The main clusters determine by using MSS
(Median Split Silhouette). MSS is used to measure homogeneity of the clustering
result, in which the clustering is selected to minimize its MSS. The clustering
procceses of 136 DNA sequences of Ebola virus, are started by performing a
global alignment, and continued with the genetic distance calculations using
Jukes-Cantor correction. In this research we found the maximum genetic distance
is 0.6153407, meanwhile the minimum genetic distance is 0. Furthermore, the
genetic distance matrix can be used as a basis for clustering sequences in Hopach-
PAM clustering method. Based on, the clustering results, we obtained 10 major
clusters with MSS value of 0.8873843. Ebola virus clusters can be identified by
subspecies and the first occoring year of their outbreak. We implemented the
global alignment process and Hopach-PAM clustering algorithm using the open
source program R.]
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43650
UI - Tesis Membership  Universitas Indonesia Library
cover
Fatimah
"Salah satu metode clustering yang banyak digunakan karena unggul dari sisi kestabilannya adalah metode Self Organizing Map. Pada tesis ini dibahas penggunaan metode SOM pada DNA Human Papillomavirus (HPV) yang menjadi penyebab utama penyakit kanker serviks, yaitu penyakit kanker yang menempati urutan pertama di negara berkembang. DNA HPV yang digunakan adalah sebanyak 18 buah yang diambil berdasarkan complete genome terbaru. Dengan menggunakan program berbasis opensource R, proses clustering berhasil mengelompokkan 18 tipe HPV ke dalam dua buah cluster berbeda, yang terdiri dari 2 tipe HPV di cluster pertama sementara 16 tipe HPV lainnya di cluster ke dua. Hasil analisis 18 tipe HPV adalah berdasarkan tingkat keganasannya, atau tingkat kesulitan dalam penyembuhannya. Dua di antara tipe HPV yang berada di cluster pertama tergolong jenis HPV jinak, sementara 16 tipe HPV yang berada di cluster ke dua tergolong jenis HPV ganas.

One of the most widely used clustering method, since it has advantage on its robustness is Self Organizing Map (SOM) method. This thesis discusses the application of SOM method on Human Papillomavirus (HPV) DNA which is a main cause of cervical cancer disease, the most dangerous cancer in developing countries. We use 18 types of HPV DNA based on the newest complete genome. By using open-source-based program R, clustering process can separate 18 types of HPV into two different clusters. There are two types of HPV in the first cluster while 16 others in the second cluster. The Analyzing result of 18 types HPV based on the malignancy of the virus (the difficultness to cure). Two of HPV types the first cluster can be classified as tame HPV, while 16 others in the second cluster are classified as vicious HPV.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43535
UI - Tesis Membership  Universitas Indonesia Library
cover
Nurlaili Lisma Febriyani
"[ABSTRAK
Berdasarkan data World Health Organization (WHO) diketahui prevalensi herpes
di negara-negara berkembang lebih tinggi dibandingkan dengan di negara maju.
Virus herpes dapat ditemukan dimana saja dan salah satu ciri penting adalah
kemampuannya yang dapat menimbulkan infeksi akut dan kronik pada waktuwaktu
tertentu. Akibat infeksi tersebut memungkinkan terjadi komplikasi yang
lebih berat. Virus herpes terdiri atas genome DNA tertutup inti yang mengandung
protein dan dibungkus oleh glikoprotein. Dengan mempelajari ekspresi gen
(sekuen DNA/protein) dan didukung oleh kemajuan di bidang bioinformatika,
dapat ditemukan sub-sub bagian penting dan kelompok gen. Virus-virus ini dapat
dikelompokkan dengan menganalisa sekuens protein dari virus herpes dengan
menggunakan algoritma Tribe Markov Clustering (Tribe-MCL). Tribe-MCL
merupakan metode clustering efisien berdasarkan teori rantai Markov chain,
untuk mengelompokkan barisan keluarga protein. Data sekuens protein virus
herpes diperoleh di GenBank yang dapat diakses pada situs National Center for
Biotechnology Information (NCBI), kemudian disejajarkan menggunakan
program BLASTp. Hasil pengelompokan sekuen protein virus herpes
menggunakan algoritma Tribe-MCL dengan program R diperoleh enam
kelompok . Semua kelompok menunjukkan jenis protein yang sama, dalam hal
ini jenis protein yang digunakan adalah glikoprotein B, M, dan H pada delapan
jenis virus herpes yang terjangkit pada manusia.

ABSTRACT
Based on World Health Organization (WHO) data, the prevalence of herpes in
developing countries is higher than in developed countries. The herpes virus can
be found anywhere and one of the important characteristics is its ability to cause
acute and chronic infection at certain times. Due to infections enables more
severe complications occur. The herpes virus is composed of DNA containing
protein and wrapped by glycoproteins. By studying the expression of genes
(sequences of DNA / protein) and is supported by advances in bioinformatics, can
be found an important sub-sections and groups of genes. These viruses can be
classified by analyzing the sequence of the protein-sequence of the herpes virus
using algorithm Tribe Markov Clustering (Tribe-MCL). Tribe-MCL is an efficient
clustering method based on the theory of Markov chains, to classify sequences of
protein families. Herpes virus protein sequence data obtained in GenBank which
can be accessed on the website National Center for Biotechnology Information
(NCBI), then aligned using BLASTp program. The results of clustering protein
sequences herpes virus using algorithms (Tribe-MCL) with a program of R
obtained six cluster. All clusters showed the same type of protein, in this case the
type of protein used is a glycoprotein B, F, and H in eight types of herpes virus
that infected humans, Based on World Health Organization (WHO) data, the prevalence of herpes in
developing countries is higher than in developed countries. The herpes virus can
be found anywhere and one of the important characteristics is its ability to cause
acute and chronic infection at certain times. Due to infections enables more
severe complications occur. The herpes virus is composed of DNA containing
protein and wrapped by glycoproteins. By studying the expression of genes
(sequences of DNA / protein) and is supported by advances in bioinformatics, can
be found an important sub-sections and groups of genes. These viruses can be
classified by analyzing the sequence of the protein-sequence of the herpes virus
using algorithm Tribe Markov Clustering (Tribe-MCL). Tribe-MCL is an efficient
clustering method based on the theory of Markov chains, to classify sequences of
protein families. Herpes virus protein sequence data obtained in GenBank which
can be accessed on the website National Center for Biotechnology Information
(NCBI), then aligned using BLASTp program. The results of clustering protein
sequences herpes virus using algorithms (Tribe-MCL) with a program of R
obtained six cluster. All clusters showed the same type of protein, in this case the
type of protein used is a glycoprotein B, F, and H in eight types of herpes virus
that infected humans]"
2015
T43669
UI - Tesis Membership  Universitas Indonesia Library
cover
Soeganda Formalidin
"Penelitian ini bertujuan untuk mencari korelasi yang kuat antar gen dan kondisi dari data ekspresi gen penyakit Diabetes Melitus (DM) pada sampel obesitas dan sampel kurus dengan menggunakan metode three phase biclustering. Tahap pertama pada metode ini adalah dengan menggunakan matriks dekomposisi Singular Value Decomposition (SVD) yang mentransformasikan data menjadi dua matriks berbasis gen dan kondisi. Selanjutnya pada tahap kedua menggunakan metode partisi Partition Around Medoids (PAM) pada dua matriks gen dan kondisi menggunakan jarak Euclidean sehingga jika digabung akan membentuk bicluster yang pada tahap tiga akan dievaluasi dengan menggunakan modifikasi lift algorithm berbasiskan korelasi Pearson yang cocok untuk mendeteksi bicluster model additive-multiplicative. Hasil dari implementasi algoritma yang digunakan pada dataset microarray dinamakan δ-corbicluster yang memiliki korelasi yang tinggi antar gen dan sampel. Implementasi dari tahap pertama dan kedua (SVDPAM) pada dataset DM dengan 1331 gen terseleksi menghasilkan 8 bicluster. Sedangkan hasil tahap ketiga yaitu modifikasi algoritma lift pada kedelapan bicluster ini menghasilkan 3 δ-corbicluster dengan masing-masing nilai korelasi yang tinggi yaitu 0,097, 0,095, 0,085, sehingga metode yang diusulkan dan hasil analisisnya pada gen dan sampel penyakit DM memiliki potensi besar ke depannya dalam penelitan pada bidang medis.

The purpose of this research is to find strong correlation among genes and conditions of Diabetes Melitus genes expression data which samples are obese and lean people using three phase biclustering. First step is to use matrix decomposition Singular Value Decomposition (SVD) to decompose matrix gene expression data into two global based gene and condition matrices. Second step is to use partition method Partition Around Medoid (PAM) to cluster gene and condition based matrices using Euclidean distance, forming several biclusters which further evaluated using modified lift algorithm based on Pearson correlation which is very appropriate method to detect additive-multiplicative bicluster type. The resulting bicluster of the proposed algorithm having strong correlation among genes and samples to microarray dataset are called δ-corbicluster. Implementation of the first and second step (SVD-PAM) to dataset DM with 1331 selected genes produces 8 biclusters. For the third step using modified lift algorithm to these 8 biclusters produces 3 δ-corbiclusters having strong correlation values: 0,097, 0,0095, 0,085, so that the proposed method and the result of analysis to genes and samples of DM have high potential in future medical researches.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49441
UI - Tesis Membership  Universitas Indonesia Library
cover
Susilo Hartomo
"ABSTRAK
Human Immunodeficiency Virus (virus HIV) adalah virus penyebab penyakit Acquired Immunodeficiency Syndrome (AIDS). Virus HIV merupakan retro virus yang menginfeksi sel-sel sistem kekebalan tubuh manusia. Virus HIV dalam proses menginfeksi tubuh manusia tidak dapat lepas dari terjadinya interaksi antara protein HIV dan protein manusia. Untuk menganalisis jaringan interaksi antar protein dapat menggunakan barisan asam amino penyusun dari suatu protein. Proses analisis dapat dilakukan dengan metode konvensional maupun komputasi. Keunggulan menggunakan metode komputasi yaitu dapat menghemat waktu maupun biaya. Metode rotation forest merupakan sebuah metode ensemble untuk pemprediksian. Dalam pemprediksian interakasi protein menggunakan barisan asam amino rotation forest akan dikombinasikan dengan fitur ekstraksi dalam penelitian ini menggunakna PseudoSMR. Data untuk membuat model prediksi berupa interaksi protein beserta barisan asam amino. Data tersebut dapat diperoleh dari NCBI (National Centre for Biotechnology Information). Fitur ekstraksi menggunakan PseudoSMR akan merubah barisan asam amio berupa barisan alphabet menjadi sebuah vektor ciri. Di dalam fitur ekstraksi PsedoSMR terdapat variabel yang membuat matriks hasil dari fitur ekstraksi PseudoSMR mempunyai ukuran yang bereda. Matriks hasil ektraksi ciri akan dijadikan sebagain data training dan data testing dalam pembuatan model rotation forest, sehingga total data set yang digunakan ada sebanyak 6 data set. Hasil prediksi rotation forest untuk RF(PCA) yang paling bagus pada data dan untuk RF(IPCA) yang paling bagus pada data . Nilai evaluasi performa pada kisaran 0.759436 sampai 0.793178 untuk RF(IPCA) sedangkan untuk RF(PCA) pada kisaran 0.774837 sampai 0.812225. Nilai evaluasi tertinggi didapat pada saat variabel dimana merupakan panjang kolom. Semua perhitungan dan proses membuat model prediksi menggunakan software R.

ABSTRACT
Human Immunodeficiency Virus (HIV virus) is a virus that causes the disease Acquired Immunodeficiency Syndrome (AIDS) which is a retro virus that infects cells of the human immune system. In a process of infecting the human body, HIV virus can not be separated from the interaction between proteins HIV and human. To analyze the interaction tissue between proteins, we can use sequence of amino acids from a protein compound. The process of analysis can be done by conventional and computational methods. The advantages of using computational methods that can save time and cost efficiently. Rotation forest is an ensemble method for the classification to be combined with the PseudoSMR feature extraction. To make predictive model, data is needed in the form of protein interaction along with amino acid sequence that can be obtained from NCBI (National Center for Biotechnology Information). Feature extraction of the amio acid sequence will be transformed into a feature vector using PseudoSMR. The result of PsedoSMR by using paramter lg = {2,3,5,6,8,10}, which will be used as training data and test data in rotation forest, so there are 6 datasets. The best result for RF(PCA) occur when lg = 5 and for RF(IPCA) occur when lg = 8. The value of performance evaluation in the range 0.759436 to 0.793178 for RF(IPCA) while for RF(PCA) in the range 0.774837 to 0.812225. The highest evaluation value is obtained when the variable K = p / 3 where p is the length of the column. All calculations and prediction process using software R."
2018
T49440
UI - Tesis Membership  Universitas Indonesia Library
cover
Zahra Alya Sari Ryanto
"ABSTRAK
Pada penelitian ini, dibahas mengenai konstruksi dan analisis terhadap sebuah model matematika penggunaan vaksinasi dengan kelas umur pada pencegahan penyakit tuberkulosis. Model tersebut dikonstruksi berdasarkan model SEIR dengan sistem persamaan diferensial biasa berdimensi sepuluh. Setiap populasi diklasifikasi berdasarkan kelompok usia anak-anak

ABSTRACT
In this article, a new mathematical model for the transmission dynamics of tuberculosis TB with the intervention of vaccination in age structured susceptible population is designed and analyzed. The model is constructed as an SEIR based system of ten dimensional ordinary differential equation. Each population is then further classified according to its age class children."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>