Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Budianto
Abstrak :
Dewasa ini perkembangan teknologi di dunia robot edukasi berkembang pesat. Robot-robot edukasi ini sering digunakan dalam riset penelitian karena kemudahan-kemudahan yang diberikannya dari segi perangkat keras. Salah satu contoh robot edukasi adalah robot LEGO Mindstorms NXT. Pada penelitian ini robot LEGO dibangun dalam bentuk robot line follower. Robot ini mampu menelusuri dan mencari jalan keluar dari labirin dinamis. Dalam menelusuri dan mencari jalan keluar, robot LEGO menggunakan algoritma Breadth First Search dan Manhattan Distance dalam memutuskan jalan mana yang harus diambil. Ketika menemui objek halangan, robot LEGO akan mengenali dan menghindari objek halangan tersebut dengan algoritma Obstacle Detection yang dimilikinya. Hasil implementasi membuktikan bahwa algoritma penelusuran labirin dinamis ini dapat diimplementasikan pada robot LEGO meskipun terdapat banyak keterbatasan dalam robot LEGO.

Nowadays, the development of technology in educational robots is rapidly evolving. Educational robots are often used in research studies because they provide convenience in terms of hardware. One example is the educational robot LEGO Mindstorms NXT robot. In this research, LEGO robots built in the form of line follower robot. Robot is able to browse and find a way out of the dynamic labyrinth. In track and find a way out, LEGO robot uses an algorithm Breadth First Search and Manhattan Distance in deciding which path to take. When encountering an obstacle object, LEGO robot will recognize and avoid that obstacle objects with Obstacle Detection algorithm. The results prove that the implementation of a dynamic maze search algorithm can be implemented on a LEGO robot even though there are many limitations in LEGO robot.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Arie Rachmad Syulistyo
Abstrak :
Neural network attracts plenty of researchers lately. Substantial number of renowned universities have developed neural network for various both academically and industrially applications. Neural network shows considerable performance on various purposes. Nevertheless, for complex applications, neural network?s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of research-es had been undertaken on the improvement of the standard neural network. One of the most pro-mising modifications on standard neural network for complex applications is deep learning method. In this paper, we proposed the utilization of Particle Swarm Optimization (PSO) in Convolutional Neural Networks (CNNs), which is one of the basic methods in deep learning. The use of PSO on the training process aims to optimize the results of the solution vectors on CNN in order to improve the recog-nition accuracy. The data used in this research is handwritten digit from MNIST. The experiments exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the conventional CNN and DBN. The execution time was also almost similar to the conventional CNN. Therefore, the proposed method was a promising method.
Jaringan syaraf tiruan menarik banyak peneliti dewasa ini. Banyak universitas-universitas terkenal telah mengembangkan jaringan syaraf tiruan untuk berbagai aplikasi baik kademik maupun industri. Jaringan syaraf tiruan menunjukkan kinerja yang patut dipertimbangkan untuk berbagai tujuan. Meskipun begitu, kinerja dari jaringan syaraf tiruan merosot dengan signifikan untuk masalah-masa-lah yang kompleks. Untuk menyelesaikan masalah tersebut di atas, banyak penelitian yang dilakukan untuk meningkatkan kinerja dari jaringan syaraf tiruan standar. Salah satu pengembangan yang men-janjikan untuk jaringan syaraf tiruan pada kasus yang kompleks adalah metode deep learning. Pada penelitian ini, diusulkan penggunaan metode Particle Swarm Optimization (PSO) pada Convolutional Neural Networks (CNNs), yang merupakan salah satu metode dasar pada deep learning. Penggunaan PSO dalam proses pelatihan bertujuan untuk mengoptimalkan hasil vektor solusi pada CNN, sehingga dapat meningkatkan akurasi hasil pengenalan. Data yang digunakan dalam penelitian ini adalah data angka yang berasal dari MNIST. Dari percobaan yang dilakukan akurasi yang dicapai dengan 4 iterasi adalah 95,08%. Hasil ini lebih baik dari CNN konvensional dan DBN. Waktu eksekusinya juga men-dekati CNN konvensional. Oleh karena itu, metode yang usulkan adalah metode yang menjanjikan.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library