Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Rangga Pranoto Nugroho
Abstrak :
Litium titanat merupakan salah satu senyawa yang digunakan sebagai anoda pada baterai litium ion. Senyawa ini disintesis dengan menggunakan metode solid state dengan mencampurkan xerogel TiO2 yang dihasilkan dari metode sol-gel dengan rasio hidrolisis Rw 2,00, dan litium karbonat (Li2CO3) sebagai sumber lithium dan dilakukan sintering pada suhu 650°C. Pada penelitian ini, xerogel TiO2 dicampurkan dengan empat variasi komposisi litium yaitu stoikiometris, excess 5%, excess 10%, dan excess 15% pada High-Energy Ball Miller (HEBM) selama 1 jam. Pengaruh dari masing-masing komposisi diamati dengan X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), Simultaneous Thermal Analysis (STA) dan Scanning Electron Microscope (SEM). Hasil penelitian menunjukkan bahwa pada komposisi litium stoikiometris dihasilkan senyawa Li4Ti5O12 dengan ukuran kristalit 19,19 nm, luas permukaan 11,47 m2/g, struktur morfologi tidak beraturan (aglomerasi). Pada komposisi litium excess 5% dihasilkan Li4Ti5O12 dengan ukuran kristalit 41,55 nm, luas permukaan 58,80 m2/g, dan sturktur morfologi tidak beraturan (aglomerasi). Pada komposisi litium excess 10% dihasilkan senyawa Li4Ti5O12 dengan ukuran kristalit 43,12 nm, luas permukaan 72,06 m2/g, dan struktur morfologi tidak beraturan (aglomerasi). Sedangkan, pada komposisi litium excess 15% dihasilkan senyawa Li4Ti5O12 dengan ukuran kristalit 50,31 nm, luas permukaan 9,06 m2/g, dan struktur morfologi tidak beraturan (aglomerasi). ......Lithium titanate (Li4Ti5O12)/LTO is one of the compounds used as anodes in lithium ion batteries. This compound is synthesized using solid state method by mixing TiO2 anatase prepared by sol-gel method with hydrolisis ratio Rw 2,00 calcined at 300oC for 2 h and lithium carbonate (Li2CO3) as a source of lithium and then sintering is performed at 650oC. The TiO2 anatase are mixed with stoichiometric, 5% excess, 10% excess, and 15% excess lithium compositions in High-Energy Ball Miller (HEBM) for 1 h. The compounds obtained are observed using X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), Simultaneous Thermal Analysis (STA) and Scanning Electron Microscope (SEM). The results showed the compounds of Li2TiO3, TiO2 rutile, and small amount of Li4Ti5O12 with irregular morphological structures (agglomeration). The stoichiometric lithium compositions produces average crystallite sizes 19,19 nm and surface area 11,47 m2/g. Then, the 5% excess lithium compositions produces average crystallite sizes 41,55 nm and surface area 58,80 m2/g. Further, the 10% excess lithium compositions produces average crystallite sizes 43,12 nm and surface area 72,06 m2/g. Finally, the 15% excess lithium compositions produces average crystallite sizes 50,31 nm and surface area 9,06 m2/g.
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60325
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutabarat, Surya Dharma
Abstrak :
Sintesis Li4Ti5O12 telah banyak diteliti karena merupakan material yang menjanjikan sebagai anoda baterai ion lithium dibandingkan dengan anoda konvensional seperti carbon. Preparasi sampel TiO2 dilakukan melalui proses solgel Rw 3,5. Lithium titanat disintesiss dengan metode solid-state dengan variabel perbedaan kadar LiOH untuk mengetahui pengaruhnya terhadap struktur kristal, sifat elektrokimia lithium titanat yang dihasilkan. Sampel yang disinteis terdiri dari 3 jenis yaitu penambahan massa LiOH secara stokiometri, massa LiOH berlebih 50% dari stokiometri dan 100% berlebih dari stokiometri. Sampel dikarakterisasi menggunakan EDS, BET, XRD, SEM, dan UV-VIS. Hasil penelitian menunjukkan, lithium titanat yang dihasilkan dengan perbandingan kadar LiOH dengan TiO2 secara stokiometri memilki tingkat kecocokan tertinggi, ukuran partikel dan energi celah terkecil dan luas permukaan terbesar bila dibandingkan dengan sampel yang kadar LiOH dibuat berlebih. Pengaruh dari perbedaan kadar LiOH dapat membentuk pengotor TiO2 rutile dan Li2TiO3.
Synthesis of Li4Ti5O12 has been widely studied as a promising material as an anode of lithium ion batteries compared to conventional anodes like carbon. Preparation sample of TiO2 is done through a process sol-gel Rw 3.5. Lithium titanate synthesized by solid-state method with variable of LiOH ratio to determine the their effects on the crystal structure, electrochemical properties of lithium titanate produced. Samples were synthesized consisting of three types, which are the addition of LiOH in stoichiometric, mass excess LiOH 50% and 100% of the stoichiometric. The samples were characterized using EDS, BET, XRD, SEM, and UV-VIS. The results showed, lithium titanate synthesized by stoichiometric ratio of LiOH and TiO2 have the highest match rate, lowest particle size and energy gap and largest surface area, compared to samples synthesized excessive levels of LiOH. The effect of mass variation of LiOH can make impurities like TiO2 rutile and Li2TiO3.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56947
UI - Skripsi Membership  Universitas Indonesia Library
cover
Situmorang, Frans Wensten
Abstrak :
Sekam padi merupakan limbah pertanian yang sangat banyak jumlahnya di negara penghasil beras. Pada tahun 2015, Indonesia sebagai negara penghasil beras memproduksi padi sebanyak 75 juta ton dan sekitar 20-25 dari berat total padi adalah sekam padi. Akumulasi dari limbah sekam padi yang sangat banyak ini dapat menjadi ancaman bagi lingkungan. Salah satu cara untuk mengurangi akumulasi dari limbah tersebut ialah dengan memanfaatkan limbah tersebut. Sekam padi mengandung silika dengan nilai sekitar 20-25 dari berat total sekam padi. Silika memiliki banyak aplikasi dalam industri gelas, keramik, dan semen. Pada penelitian ini silika diesktraksi dari abu sekam padi menggunakan metode alkali yang disertai dengan proses refluks. Abu sekam padi direfluks menggunakan larutan NaOH dengan konsentrasi 5, dan 10 selama 1 jam pada temperatur 80 C. Proses ini menghasilkan larutan Sodium Silikat Na2SiO3. Selanjutnya, asam HCl atau CH3COOH ditambahkan secara perlahan ke dalam larutan sodium silikat disertai dengan pengadukan dengan kecepatan konstan. Proses ini akan menghasilkan silika gel. Silika gel yang terbentuk diisolasi pada temperatur 30 C selama 18 jam. Selanjutnya, silika gel dipanaskan selama 12 jam dengan temperatur 120 C. Proses ini akan menghasilkan xerogel. Xerogel kemudian dikarakterisasi. Metode karakterisasi material yang digunakan ialah X-ray Diffraction XRD, Fourier transform infrared FTIR, Braun Emmet Teller BET, dan Energy Dispersive X-Ray EDX. Hasil penelitian menunjukkan bahwa silika yang diekstraksi dari sekam padi banyak mengandung unsur Si dan O. Berdasarkan hasil analisis XRD, silika yang dihasilkan dari sekam padi merupakan silika amorf, dan berdasarkan hasil analisis FT-IR, terdapat vibrasi tekuk dan ulur Si-O dalam serbuk silika. Silika dengan pengasaman menggunakan asam HCl memiliki luas permukaan sebesar 236,2 m2/g. Sementara silika dengan pengasaman menggunakan asam CH3COOH memiliki luas permukaan sebesar 204,8 m2/g. Silika yang diasamkan dengan HCl memiliki yield tertinggi yaitu sebesar 74,9 yang didapatkan dari rasio antara 3,745 gr massa xerogel dengan 5 gr massa abu sekam padi. Silika yang diasamkan dengan CH3COOH memiliki yield terendah yaitu sebesar 60,06 yang didapatkan dari rasio antara 3,003 gr massa xerogel dengan 5 gr massa abu sekam padi.
Rice Husk RH is an enormous agricultural waste in rice producing country. In 2015, Indonesia, a rice producing country, produced paddy about 75 million tons, and about 20 22 of total weight of paddy is rice husk. The accumulations of these huge amount of rice husk waste can be environmental threat. One of the solution to reduce these accumulations is to utilize these wastes. Rice husk contains silica in the range of 20 ndash 25 wt. Silica has many applications in the glass, ceramics, and cement industries. In this study, silica was extracted from rice husk using alkaline extraction method with reflux process and it was followed by acidification. In this study, rice husks ash RHA was refluxed by aqueous NaOH with concentration 5 and 10, for 1 hour at 80 C. This process produced Sodium Silicate solution Na2SiO3. Next, HCl or CH3COOH acid was added dropwise into the sodium silicate solution under constant stirring condition until pH 7. This process produced wet gel silica. The silica gel obtained was isolated at 30 C for 18 hours. Then, it was heated to 120 C for 12 hours to produce xerogel. Next, xerogel was characterized. The Characterization methods which were used in this study are X ray Diffraction XRD, Fourier transform infrared FTIR , Braun Emmet Teller BET, and Energy Dispersive X Ray EDX. The results showed that silica which was extracted from rice husks contains many Si and O elements. Based on XRD analysis, silica produced from rice husk ash is an amorphous silica and based on FT IR analysis, it has bending and stretching vibration of Si O. Silica with HCl acidification has a surface area 236.2 m2 g. In the other hand, silica with CH3COOH acidification has a surface area 204.8 m2 g. Silica which acidified by HCl has the highest yield, that is about 74.9 which was obtained from ratio between 3.745 gr mass of xerogel and 5 gr mass of RHA. Silica which acidified by CH3COOH has the lowest yield, that is about 60.06 which was obtained from ratio between 3.003 gr mass of xerogel and 5 gr mass of RHA. Keywords Rice husk ash Silica Alkaline extraction Reflux process Xerogel.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aji Priombodo
Abstrak :
Silika (SiO2) adalah material yang berdaya guna tinggi, aplikasinya sangat luas baik dalam kegiatan industri maupun kehidupan sehari-hari. Salah satunya sebagai silika gel yaitu utnuk mengurangi kelembaban udara. Pada umumnya silika gel dibuat dengan melebur pasir kuarsa dengan sodium karbonat pada suhu 1300°C. Proses ini sangat boros energi dan menimbulkan masalah lingkungan akibat eksploitasi pasir kuarsa yang terus-menerus karena tidak dapat diperbaharui. Oleh karena itu diperlukan sumber silika baru yang mudah didapat dan dapat diperbaharui. Berdasarkan penelitian yang telah dilakukan diketahui bahwa abu sekam padi memiliki kandungan silika yang tinggi (berada pada kisaran 90 %). Hal ini memungkinkan sekam padi untuk menjadi sumber silica baru pengganti kuarsa. Indonesia memiliki potensi besar dengan alternatif ini, karena pada tahun 2006 produksi gabah kering giling Indonesia mencapai lebih dari 54,4 juta ton. Dari sini setidaknya Indonesia memproduksi paling sedikit 10 juta ton sekam padi per tahun. Melalui penelitian ini diharapkan dapat memperoleh proses produksi silika gel yang lebih ramah lingkungan dan hemat energi. Penelitian ini bertujuan memproduksi silika gel dari sekam padi. Pengabuan sekam padi dilakukan dengan furnace pada suhu 600°C selama 1 jam. Silika dari abu sekam padi diekstrak dengan cara mereaksikannya dengan larutan NaOH 1M. Larutan hasil ekstraksi kemudian disaring dan dititrasi dengan HCl sampai pH tertentu (4 sampai dengan 9) dan diinkubasi untuk membentuk hydrogel. Hydrogel yang terbentuk kemudian dikeringkan pada suhu 60°C dan 80°C hingga membentuk xerogel. Xerogel merupakan produk silika gel yang diinginkan. Hasil dari penelitian ini menunjukkan bahwa pH yang menghasilkan silika gel dengan kemampuan terbaik dalam menyerap kelembaban udara adalah pH 6 yaitu sebesar 47.48 % (60°C) dan 48.28 % (80°C). Adapun selisih kemampuan silica gel pH 6 dengan silika gel komersial yaitu sebesar 23.11 % (60°C) dan 23.90 % (80°C). Dari uji BET diperoleh luas area permukaan silika gel pH 6 yaitu sebesar 344.6 m2/g (60°C) dan 361.4 m2/g (80°C). ......Silica is a valuable material, it is widely used in industry or in our daily lifes. One of its uses is to reduce air moisture. Usually silica gel is made by melting of quartz sand along with sodium carbonate at 1300 oC. So the process need large amount of energy and also harmfull to the environment because quartz sand mining is unrenewable. Henceforth, we need a new source of silica that easy to find and renewable. Based on the research that has been done, it is discovered that rice hull ash contain a high amount of silica (about 90 %). So that, the rice hull is a potential new source of silica to replace quartz sand mining. With this alternatives Indonesia has a big potential, because in the 2006 Indonesia produce dry milled rice of more than 54,4 million tonnes. From this number, at least Indonesia produces 10 million tonnes of rice hull each year. Therefore, this research was intended to get a new process of silica gel production which more environment friendly and use less energy. This research is intended to produce silica gel from rice hull. To convert rice hull into ashes, the rice hull is burndt in a furnace at 600°C for 1 hour. Silica was extracted from the ashes by reacting it with 1M NaOH solution. The resulted solution then filtered and titrated with HCl until reach certain pH (4 to 9). The solution then incubated to form hydrogel. The hydrogel then dried at temperature of 60°C and 80°C to produce xerogel. Xerogel is the form of silica gel we want. The result of this research showed that the best silica gel to adsorb moisture is the silica gel that made at pH 6 which are 47.48 % (60°C) and 48.28 % (80°C). This silica gel gives a better performance than commercial silica gel, their differences are 23.11 % (60°C) and 23.90 % (80°C). The result of BET test showed that the silica gel pH 6 have the specific surface area of 344.6 m2/g (60°C) and 361.4 m2/g (80°C).
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49688
UI - Skripsi Open  Universitas Indonesia Library
cover
Anne Zulfia Syahrial
Abstrak :
Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO was synthesized by a solid state method using TiO2 xerogel prepared by the sol-gel method and lithium carbonate (Li2CO3). Three variations of Li2CO3 content addition in mol% or Li2CO3 molar excess were fabricated, i.e., 0, 50 and 100%, labelled as sample LTO-1, LTO-2 and LTO-3, respectively. The characterizations were made using XRD, FESEM, and BET testing. These were performed to observe the effect of lithium excess addition on structure, morphology, and surface area of the resulting samples. Results showed that the crystallite size and surface area of each sample was 50.80 nm, 17.86 m2/gr for LTO-1; 53.14 nm, 22.53 m2/gr for LTO-2; and 38.09 nm, 16.80 m2/gr for LTO-3. Furthermore, lithium excess caused the formation of impure compound Li2TiO3, while a very small amount of rutile TiO2 was found in LTO-1. A near-pure crystalline Li4Ti5O12 compound was successfully synthesized using the present method with stoichiometric composition with 0% excess, indicating very little Li+ loss during the sintering process.
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:3 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
H. Aripin
Abstrak :
In this investigation, SnO2-glass composites were produced by mixing SnO2 and amorphous silica xerogel (SX) extracted from sago waste ash. The composition was prepared by adding 5 mol% of SnO2 into SX; the samples were dry pressed and sintered in a temperature range between room temperature and 1500oC. Their properties were characterized on the basis of the experimental data obtained using Archimedes’ principle, X-ray diffraction (XRD), Fourier transformed infra-red (FTIR), and a scanning electron microscopy (SEM). It was found that the bulk density increased along with the sintering temperature. In the temperature range from 1300oC to 1500oC, the glass ceramic reached a bulk density of about 2.5 g/cm3. The results of the interpretation of XRD patterns, FTIR spectra, and SEM images allow us to conclude that this increase in density was due to an increased degree of crystallinity of SnO2 in the silica xerogel composite.
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:3 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Muksin, Author
Abstrak :
Litium titanat (Li4Ti5O12) merupakan senyawa yang digunakan sebagai anoda baterai ion litium. Senyawa litium titanat disintesis berdasarkan metode solid state dengan mereaksikan TiO2 xerogel yang dibuat dengan metode sol-gel dan litium oksida (Li2O). Dalam penelitian ini menggunakan tiga variasi penambahan kadar massa litium oksida (Li2O); massa Li2O sesuai stokiometri (0% melebihi stokiometri), 50% massa Li2O melebihi stokiometri dan 100% melebihi nilai stokiometri. Pengaruh dari penambahan kadar massa litium oksida (Li2O) pada struktur, morfologi, dan energi celah pita tersebut diamati. Sampel yang terbentuk diuji dengan menggunakan X-Ray diffraction, scanning electron microscope (SEM) dan UV-Vis spectroscopy. Hasil penelitian menunjukan bahwa dengan penambahan massa Li2O sesuai stokiometri membentuk senyawa Li4Ti5O12 dan pengotor seperti TiO2 rutile dan Li2TiO3 dengan ukuran kristalit 13,7 nm, ukuran diameter partikel 0,540 μm band gap energy 3,864 eV, penambahan massa Li2O 50% melebihi stokiometri membentuk senyawa Li2TiO3 dengan ukuran kristalit 7,2 nm, ukuran diameter partikel 1,062 μm dan band gap energy 3,838 eV dan penambahan 100% massa Li2O melebihi stokiometri membentuk Li2TiO3 dengan ukuran kristalit 12,4 nm, ukuran diameter partikel 1,916 μm dan band gap energy 3,778 eV. Senyawa Li4Ti5O12 terbentuk hanya dengan penambahan Li2O sesuai stokiometri. Untuk mensintesis senyawa Li4Ti5O12 bebas dari pengotor mengunakan metode solid state dapat mengacu pada diagram fasa Li2O-TiO2 (29% mol Li2O-71% mol TiO2).
Lithium titanate (Li4Ti5O12) is anode material for application in lithium ion battery. Lithium titanate was synthesized by solid-state method using xerogel TiO2 was prepared by sol–gel process and commercial lithium oxide (Li2O) powder. This research uses 3 various content of lithium oxide (Li2O); 0% Li2O mass excess, 50% Li2O mass excess, and 100% Li2O mass excess. The effect of adding lithium oxide (Li2O) on structure, morphology of particle surface, and band gap energy was examined. Samples were obtained by X-ray diffraction, scanning electron microscope (SEM), ultraviolet visible (UV-Vis). The results show with adding lithium oxide stoichiometry (0% Li2O excess) produces Li4Ti5O12 and impurities such as rutile TiO2 and Li2TiO3, it produces Li2TiO3 with 50% Li2O excess and it produces Li2TiO3 with 100% Li2O excess. In this research show with appropriate of stochiometry content (0% Li2O excess) produces Li4Ti5O12 with crystallite size is 13,7 nm and impurities namely Li2TiO3 with crystallite size is 22,8 nm and TiO2 with crystallite size 9,14 nm, diameter particle size is 0,540 μm and bandgap energy 3,864 eV. 50% Li2O excess produces Li2TiO3 with crystallite size 7,2 nm, diameter particle size is 1,062 μm and bandgap energy 3,838 eV and with 100% Li2O excess produces Li2TiO3 with crystallite size 12,4 nm, diameter particle size is 1,916 μm and band gap energy is 3,778 eV. The Li4Ti5O12 compound was formed only with appropriate of stoichiometry content. In order to make high purity of Li4Ti5O12 compound on solid state reaction, Li2O-TiO2 phase diagram (29% mol Li2O-71% mol TiO2) can be used as reference.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56740
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Kusuma Wardana
Abstrak :
Sekam Padi merupakan hasil sampingan dari proses penggilingan padi dan menjadi limbah di banyak negara produsen beras, termasuk di Indonesia karena memiliki nilai gizi yang kurang baik. Secara khusus, kandungan silika amorf dalam sekam padi berada pada kisaran 20-25% wt%. Pembakaran sekam padi menghasilkan abu yang mengandung silika. Pada penelitian ini silika pada sekam padi akan diekstrak menggunakan metode alkali dengan proses refluks. Sebelum sekam padi dibakar, dilakukan pelindian terhadap sekam padi menggunakan larutan HCl dengan variasi konsentrasi 1%, 3%, dan 8%. Pembakaran dilakukan pada temperatur 250°C, 450°C, dan 700°C selama 6 jam. Setelah itu, dilakukan refluks pada abu sekam menggunakan NaOH 10% untuk mengisolasi silika didalamnya. Kemudian dilakukan penambahkan HCl 1M untuk mengambil silika menjadi silika xerogel. Silika kemudian dioptimalisasi menggunakan 3-chloropropyltrimethoxysilane (CPTMS). Hasil yang didapat menunjukan bahwa penggunaan konsentrasi yang lebih tinggi saat pelindian dapat meningkatkan kemurnian dan yield dari silika yang didapatkan.terlihat dengan konsentrasi 8% didapat yield dan kemurnian tertinggi yaitu 68,1% dan 93,95%. Selain itu penambahan CPTMS dianggap tidak efektif karena hasil menunjukan bahwa persentase penghilangan logam oleh silika tanpa optimalisasi yaitu sebesar 26,42% & 14,44% lebih besar dari silika +CPTMS yaitu sebesar 0,053% & 6,15%.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Priyono
Abstrak :
Lithium Titanate (Li4Ti5O12) or (LTO) has a potential as an anode material for a high performance lithium ion battery. In this work, LTO was synthesized by a hydrothermal method using Titanium Dioxide (TiO2) xerogel prepared by a sol-gel method and Lithium Hydroxide (LiOH). The sol-gel process was used to synthesize TiO2 xerogel from a titanium tetra-n-butoxide/Ti(OC4H9)4 precursor. An anatase polymorph was obtained by calcining the TiO2 xerogel at a low temperature, i.e.: 300oC and then the hydrothermal reaction was undertaken with 5M LiOH aqueous solution in a hydrothermal process at 135oC for 15 hours to form Li4Ti5O12. The sintering process was conducted at a temperature range varying from 550oC, 650oC, and 750oC, respectively to determine the optimum characteristics of Li4Ti5O12. The characterization was based on Scanning Thermal Analysis (STA), X-ray Powder Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) testing results. The highest intensity of XRD peaks and FTIR spectra of the LTO were found at the highest sintering temperature (750oC). As a trade-off, however, the obtained LTO/Li4Ti5O12 possesses the smallest BET surface area (< 0.001 m2/g) with the highest crystallite size (56.45 nm).
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:4 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
H Aripin
Abstrak :
This investigation presents the synthesis procedure and the results of an investigation of the crystallite growth of TiO2 and the formation of Si–O–Ti bonds in novel silica xerogel (SiO2) glass ceramic produced from an amorphous SX derived from sago waste ash. The composition had been prepared by adding various amounts of TiO2, from 20 wt% to 80 wt%, into the amorphous SiO2, and then a series of samples were sintered at 1200°C for 2 hours. The influence of the content of TiO2 and the sintering temperature on the properties of TiO2, namely crystallite size and formation of Si–O–Ti bonds, has been studied in detail. The properties of the produced ceramics have been characterized on the basis of the experimental data obtained using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. It has been found that an addition of SiO2 confers an appreciable effect on the quantity of Si–O–Ti bonds. The interpretation of the XRD pattern allows one to explain the increase in the crystallite size of rutile TiO2 by a decreased quantity of Si–O–Ti bonds.
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:8 (2017)
Artikel Jurnal  Universitas Indonesia Library