Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 26 dokumen yang sesuai dengan query
cover
Nurraflis Salam
Abstrak :
Sifat-sifat udara yang keluar dari desiceant rotary dehumidiiier dapat diketahui dengan menggunakan metode percobaan dan rnetode teoritis. Dalam skripsi ini dijelaskan mengenai penentuan sifat-sifat udara yang keluar melalui desiccant rotary dehumidifier dengan menggunakan metode percobaan. Percobaan dilakukan dengan beberapa metode yaitu memvariasikan debit udara proses inlet, memvariasikan debit udara regenerasi inlet dan memvariasikan jumlah uap air proses inlet dengan menggunakan nozzle. Dari data percobaan, variasi debit udara proses dan udara regenerasi dapat mempengaruhi jumlah uap air yang keluar melalui udara proses dan regenerasi. Data percobaan memvariasikan jumlah uap air proses inlet digtmakan untuk membuat gratik yang dapat memprediksi sifat-sifat udara proses yang keluar dari dehumidifier. Untuk memvariasikan jumlah nap air rnaka ditambahkan suatu alat berupa spuyer yang dihubungkan dengan tabung bertekanan yang berisi air dan udara sehingga dapat menyemprotkan uap air. Dari hasil percobaan diperoleh dna graiik yang dapat menentukan sifat-sifat udara proses outlet pada temperatur ruangan sebesar 2S°C. Grafik ini pada nantinya dapat digunakan sebagai performance antara satu dehumidyier dengan dehumidifer lainnya. ......Outlet air properties from desiccant rotary dehumidifier can be defined with experiment method and theoretic method. In this thesis explains about how to determine outlet air properties from rotary desiccant dehumidifier with experiment method Experiments have done with some types such as make variation on debit air process inlet, variation on debit air regeneration inlet and make water vapor variation on air process inlet that used nozzle. In the experiments found that make variation debit air process inlet and air regeneration inlet influenced humidity ratio on air proses outlet and regeneration outlet. Data from experiment in make variation on humidity ratio on process inlet can be used to predict air process inlet properties. To add water vapor in the air so have to use new component such as nozzle that connected with pressurized tube so it can spray water to air process inlet. Data jrom experiments can be used to make two graphics that can predict air process outlet properties in ambient temperature about 25°C in the next time, these graphics can be used as performance comparative between two or more desiccant rotary dehumidifier.
Depok: Fakultas Teknik Universitas Indonesia, 2005
S37750
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pebrian Zezi
Abstrak :
Proses dehumidifikasi merupakan salah satu cara yang dapat digunakan untuk menurunkan kadar uap air diudara sehingga mengakibatkan kelembaban udara menjadi turun. Skripsi ini menjelaskan effek dari setiap perubahan variabel inlet dan roda desiccant terhadap effectiveness dehumidifier. Selain itu pada penulisan ini juga dilakukan analisa untuk mengetahui hubungan antara effectiveness dehumidifier dan NTU. Secara fisika peristiwa adsorbsi disebabkan oleh ikatan vander waals dan gaya elektrostatik antara molekul adsorbate terhadap atom penyusun permukaan adsorbent. Luas permukaan dan polaritas permukaan merupakan sifat utama yang mempengaruhi daya adsorbsi dari material penyerap. Selain itu ukuran mikropori pada adsorbent juga menentukan kemampuan adsorbsi suatu adsorbent. Dengan demikian, semakin luas permukaan adsorbent maka kapasitas adsorbsi akan semakin besar. Dari hasil percobaan dapat diketahui semakin besar kecepatan udara proses masuk maka akan semakin sedikit jumlah uap air yang dapat dibuang pada proses dehumidifikasi. Semakin tebal roda desiccant maka semakin banyak uap air yang dapat diserap pada proses dehumidifikasi. Proses dehumidifikasi pada rotary desiccant dehumidifier berlangsung lebih sempurna untuk temperatur regenerasi masuk 140°C dibandingkan dengan 120,100,80 dan 60°C. Putaran roda desiccant berpengaruh pada waktu yang dibutuhkan untuk proses adsorbsi dan desorbsi. Dengan kata lain ketika kecepatan putar roda desiccat dibawah kecepatan optimum,proses adsorbsi dan desorbsi berlangsung terlalu lama sehingga banyak energi yang terbuang sia-sia mengakibatkan effectifeness dehumidifier jadi lebih kecil. ......The dehumidifying process is one ofmet/we! for air drying that reduce air humidity. This thesis explains about effects of changes variable inlet and desiccant wheel with effectiveness of dehumidifier. This thesis also presented of analysis about correlations dehumidifier effectiveness and NTU. Physical adsorption is caused mainly by van der wools force and electrostatic force between adsorbate molecules and atoms which compose the adsorbent surface. Surface area and polarity are main properties for characterizing adsorptivity of adsorbents. The size of micro pore is another important property properties/or characterizing adsorptivity of adsorbents. So, large specific surface area of adsorbent is preferable for providing, large adsorption capacity. In the experiments found that larger velocity of air process inlet cause less water vapor can remove in the dehtimidifying process. The dehumidifying process can be remove more water vapor by increase the wheel thickness. The effectiveness of rotary desiccant dehumidifier is larger for regeneration temperature 140 C than regeneration temperature 120°C, 100°C, 80°C, and 60°C. The rotary speed of desiccant wheel is influences for the optimum time process of adsorption and desorption. In the other hand, when the rotary speed of desiccant wheel is lower than optimum speed, the adsorption and desorption process are too long which wasting more sensible and latent energy and less effectiveness of dehumidifier.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37846
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kresna Septian
Abstrak :
Indonesia merupakan negara yang memiliki kelembaban yang cukup tinggi dan cuaca yang cukup panas, oleh karena itu negara Indonesia membutuhkan alat pengering udara agar kelembaban dapat turun sampai titik nyaman untuk manusia. Sistem pengering udara lebih ramah lingkungan sebagai teknologi alternatif untuk proses penurunan kelembaban, terutama dalam kasus dengan muatan laten yang tinggi untuk menjaga kualitas udara. Teknologi ini lebih efisien di iklim panas dan lembab seperti Indonesia. Penelitian ini melakukan penyelidikan eksperimental untuk mengetahui rasio kelembapan terhadap udara untuk mengetahui karakteristik cairan ionik menggunakan alat pengering udara. Cairan ionik dalam percobaan ini akan melewati bilah kayu yang berfungsi sebagai alat penukar kalor, cairan ionik akan bersirkulasi selama kurang lebih dua jam. Eksperimen ini memvariasikan laju aliran cairan ionic dari 200 sampai 600 L/h dan didapatkan juga hasil rasio kelembaban yaitu -0.10 sampai -0.56 g/kg. Setiap kenaikan laju aliran besarannya juga akan semakin meningkat.
Indonesia is a country that has quite high humidity and fairly hot weather, therefore the country of Indonesia needs a dehumidifier so that humidity can drop to a comfortable point for humans. The dehumidifier system is more environmentally friendly as an alternative technology for the process of reducing humidity, especially in cases with high latent loads to maintain air quality. This technology is more efficient in hot and humid climates such as Indonesia. This study conducted an experimental investigation to determine the humidity ratio of air to determine the characteristics of ionic liquids using dehumidifier. The ionic liquid in this experiment will pass through a conventional wooden slats that functions as a heat exchanger, the ionic liquid will circulate for about two hours. This experiment varied the flow rate of ionic liquids at 200 to 600 L / h and the results of the humidity ratio were -0.10 to -0.56 g / kg. Every increase in the rate of flow will also increase the humidity ratio.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simamora, Gorga Hasintongan
Abstrak :
Perkembangan industri diikuti oleh perkembangan kebutuhan faktor pendukungnya. Salah satu faktor pendukungnya adalah pengkondisian lingkungan yang diperlukan untuk kenyamanan manusia dan mendukung proses produksi. Kelembaban merupakan kondisi lingkungan yang dapat menimbulkan masalah dalam berbagai industri, diantaranya : kebocoran arus pada perangkat elektronik, korosi logam dan baja, dan pertumbuhan jamur pada produk makanan dan obat. Alat pengkondisian udara kemudian menjadi suatu kebutuhan. Metode dehumidifikasi merupakan proses yang menggunakan media penyerap air (desiccant) untuk mengendalikan faktor kelembaban udara. Penelitian ini berkaitan dengan analisis rotary desiccant dehumidifier yang dapat dilihat dari perbandingan kondisi aktual dehumidifier terhadap kondisi ideal. Pengamatan akan dilakukan dengan beberapa faktor yang mempengaruhi performa roda desiccant, yaitu kecepatan fluida yang mengalir pada daerah proses dan regenerasi roda desiccant, besar kecepatan putar roda desiccant, besarnya kalor yang diberikan heater dan material penyerap yang digunakan. Pengukuran dilakukan dengan bantuan perangkat lunak Lab View 2013. Pada percobaan didapatkan hasil performa optimal rotary desiccant dehumidifier terjadi pada kecepatan udara proses inlet sebesar 3 m/s, kecepatan rotational 15 rpm dan pada temperatur udara regenerasi inlet yang tinggi. ......Industrial development followed by the development of needs supporting factors itself. Environment condition is one of the important factor that require for the convenience of humans and to support the production process. Humidity is the environmental condition that can cause problems in variety of industries, such as : current leakage on electronic devices, metal and steel corrosion, and mold growth on food and drug products. The device for controlling air condition then became a necessity. Dehumidification method is the process use water absorbent media (desiccant) for control the humidity factor in air. This research aims at analyze rotary desiccant dehumidifier that use method of comparing actual condition of dehumidifier to ideal condition. The study will focus on observing several factors that affect desiccant performance, i. e. the velocity of fluid that flows in process and regeneration area of desiccant wheel, the speed of desiccant wheel rotation, the size of heat that given by heater, and absorbent material that used. The measurement then helped by software Lab View 2013. The results show that the optimal performance of the rotary desiccant dehumidifier occur at the velocity of the air inlet process is 3 m/s, the rotational wheel speed is 15 rpm and at the highest inlet regeneration air temperature.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56662
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Hidayat
Abstrak :
ABSTRAK
Proses pengeringan pada industri pangan digunakan untuk pengawetan makanan yaitu dengan cara mengurangi kadar air sampai batas tertentu pada makanan tersebut untuk disimpan dalam beberapa waktu. Ini dilakukan untuk mencegah penurunan kualitas yang lebih buruk yang disebabkan oleh mikroorganisme, perubahan temperatur dan kelembaban. Salah satu metode pengeringannya adalah pengering semprot. Dalam proses pengeringannya, terdapat beberapa faktor yang mempengaruhi hasil pengeringan, diantaranya adalah temperatur udara pengeringan, debit udara panas, massa bahan yang akan dikeringkan dan rasio kelembaban udara. Pada daerah yang lembab dan bahan yang sensitif lebih baik menggunakan pemanas refrigerasi dengan dehumidifier karena dapat dihasilkan udara yang lebih kering sehingga efisiensi pengeringan dapat ditingkatkan agar mendapatkan temperatur pengeringan seminimum mungkin, sehingga mengurangi tingkat kerusakan kandungan materialnya.
ABSTRACT
The drying process used in the food industry for food preservation in the way to reduce the moisture content till needed level on the food to be stored. This is done to prevent a worse quality degradation caused by microorganisms, changes in temperature and humidity. One method of drying is spray drying. In the drying process, there are several factors that affect drying results, including the drying air temperature, the hot air discharge, the mass of material to be dried and air humidity ratio. In humid areas and sensitive material better use refrigeration heating with dehumidifier because it can be produced more dry air so that the drying efficiency can be improved in order to obtain a minimum drying temperature, thus reducing the level of damage to its material content.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1780
UI - Skripsi Open  Universitas Indonesia Library
cover
Awaludin Martin
Abstrak :
Unjuk kerja dan rotary desiccant dehumidifier dapat diwakili oleh nilai efektivitasnya, dimana secara teoritis efektivitas adalah perbandingan antara jumlah kandungan air yang terserap dengan jumlah kandungan air yang mungkin terserap secara maksimum. Tulisan ini menghasilkan sebuah formula sederhana untuk menghitung efektivitas ideal rotary desiccant dehumidifier sebagai fungsi koefisien perpindahan massa, kepadatan desiccant, tebal silinder, dan fluks massa udara. Dan persamaan-persamaan yang diturunkan pada proses keseimbangan massa, maka didapat sebuah formula E=1-e Gu. Formula tersebut sebangun dengan formula efektivitas dengan metode E-Ntu pada sebuah heat exchanger dengan aliran counterflow dan juga dengan formula efektivitas pada evaporative cooling dan cooling tower. Dari data-data yang diperoleh dapat disimpulkan bahwa efektivitas ideal rotary desiccant dehumidifier akan bertambah besar seiring dengan bertambah besarnya temperatur udara masuk yang berada pada kisaran 46.12% sampai dengan 61.49%. Sedangkan pada pengukuran yang dilakukan efektivitas rotary desiccant dehumidifier semakin berkurang seiring dengan bertambahnya temperatur udara masuk. Efektivitas ideal rotary desiccant dehumidifier tidak terpengaruh oleh besarnya temperatur udara regenerasi, karena formula yang digunakan tidak meliputi properti udara regenerasi. Pada pengukuran yang dilakukan efektivitas semakin berkurang dengan semakin bertambahnya temperatur udara regenerasi. Rasio kelembaban udara keluar proses jumlahnya bertambah seiring dengan bertambahnya rasio kelembaban udara masuk, hal tersebut juga terjadi pada eksperimen yang dilakukan. Dari penulisan ini dapat diambil kesimpulan bahwa formula yang didapat ini dapat disempurnakan dengan menambahkan properti udara regenerasi. ...... Performance of the rotary desiccant dehumidifier can be represented by the value of effectiveness, as per theoretical, effectiveness is a ratio of actual moisture extraction with maximum possible moisture extraction. The result from this paper is a simple formula to account the effectiveness of the rotary desiccant dehumidifier as function from mass transfer coefficient, desiccant compactness, desiccant wheel thickness, and mass flux of the air. The formula can be found by develop muss balance equation and the effectiveness equation is E=1-e Ga. This formula is similar with the effectiveness of counter flow of heat exchanger by E - Ntu method and also similar with the effectiveness of evaporative cooling and cooling tower. From the experiment, the increasing of ideal effectiveness depends on the increasing inlet process temperature. The range ideal effectiveness is 46.12% to 61.49%. The actual effectiveness will be decreased with increasing inlet process temperature. The ideal effectiveness of the rotary desiccant dehumidifier doesn't influence by regeneration temperature, because this formula doesn't include the properties of the air of regeneration. On measurement, effectiveness will decrease with increasing regeneration temperature. Humidity ratio of the outlet process of the air will increase with increasing humidity ratio of the inlet temperature, which occurs on the experiment. From this paper, we can take a summary that this formula can be completed by the properties of regeneration addition.
Depok: Fakultas Teknik Universitas Indonesia, 2000
T4541
UI - Tesis Membership  Universitas Indonesia Library
cover
Simbolon, Syaloom B.
Abstrak :

ABSTRAK
Dalam industri pengkondisian udara, dapat ditemui beberapa sistem-sistem pengkondisian udara termasuk didalamnya sisitem perngkondisian udara untuk kategori nyaman, sistem pengkondisisan udara di industri atau sistem pengkondisian udara berdasarkan musim sepanjang tahun, tiap sistem tidaklah selalu sama keadaan dan kebutuhannya. Demikian juga halnya kandungan kelembaban (moisture) dalam udara yang dikondisikan akan berbeda berdasarkan sisitem pengkondisian yang digunakan, jumlah kandungan uap air diudara haruslah dikendalikan agar diperoleh kondisi yang diinginkan untuk tiap-tiap sistem. Untuk rnengurangi jumlah kandungan uap air digunakan dehumidifier. Dalarn tulisan ini dibahas suatu simulasi model dehumidifier yang mengunakan metode caoiing coil dehumidgficafion dan menggunakan R-22 sebagai media pendingin (refrigerant). Simulasi dilakukan dengan mernvariasikan beberapa kondisi yaitu variasi alat dehumidifiernya sendiri ( variasi kondisi operasional) serta variasi kondisi udara luar yang memasuki koil pcndingin (Temperatur udara masuk , RH udara masuk dan laju massa udara masuk ). Data udara basah dan fluida prefrigeran diperoleh dengan bantuan pemrograman CATH. Analisa dilakukan dengan menghitung kondisi keluaran koil pendingin, dalam perhitungan dibuat beberapa asumsai dan batasan, hasil perhitungan ditampilkan dalam tabel dan grafik. Dari simulasi yang dilakukan diperoleh hasil yang menunjukkan karakteristik model dehumidifier terhadap variasi kondisi yang disimulasikan, kamkteristik yang menjadi pembahasan adalah kapasitas dehumidifikasi dan ternperatur udara keluar koil pendingin karena kedua parameter tersebut menjadi indikasi unjuk kerja dehumidifier tersebut.
1997
S36194
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Anandika Putra
Abstrak :
Pengembangan teknologi spray drying diarahkan untuk menemukan cara efisien dan efektif dalam usaha penghematan energi. Kelembaban udara sangat berpengaruh terhadap tingginya temperatur udara pengeringan. Untuk mengatasi kelembaban udara di Indonesia yang tinggi maka dalam penelitian spray drying yang dilakukan di DTM FT UI memanfaatkan sistem dehumidifier sehingga proses pengeringan dapat dilakukan pada temperatur rendah. Penambahan sistem refrigerasi pada alat pengering semprot ini akan menghasilkan panas yang terbuang pada kondensor. Panas yang terbuang bisa dimanfaatkan sebagai pengering dari pompa kalor. Sehingga dapat mengurangi beban daya pemanas listrik. Penelitian dilakukan dengan melakukan simulasi CFD untuk memperoleh laju penguapan air pada spray drying terhadap beberapa variasi, laju udara, temperatur udara pengeringan dan titik embun udara pengeringan. Hasil simulasi menujukan pengaruh dari peningkatan laju udara pengeringan terhadap penurunnan laju penguapan air. Penurunnan kelembaban udara berpengaruh terhadap meningkatnya laju penguapan air. Penambahan pemanas pompa kalor dikombinasikan dengan pemanas listrik meningkatkan kinerja spray drying. ...... Development of spray drying technology is conducted to find the most efficient and effective way in energy saving. The air humidity become one of factors that drying process involve high temperature. Indonesia is a country which is covered by high humidity so spray drying research in DTM FT UI used dehumidifier system to reduce air humidty. This refrigeration system produce heat which is not used in spray drying process. This unused energy can be aplied as heat pump dryer so power supplied by electric heater can be decreased. Research is done by using CFD simulation to get water eveporating rate in spray drying by some variations, air flow, air temperature dan dew point. The result show that the influence of air flow and humidity to evaporating rate. The involvement of heat pump drying from dehumidifier system increase the psray drying performance.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46467
UI - Skripsi Membership  Universitas Indonesia Library
cover
Idris Masyhuri
Abstrak :
Pemanfaatan dehumidifier sebagai pengering semprot pada sistem dehumidifikasi dapat menghemat konsumsi energi, dalam eksperimen ditemukan dalam sebuah grafik simulasi untuk perbandingan antara refrigeran R-134a, R-152a dan R407c dari aspek konsumsi energi dehumidifier yang digunakan pada pengering semprot saat masuk heater diketahui bahwa mass flow udara dari blower adalah 150 lpm, 300 lpm dan 450 lpm pada kondisi ekperimen R-134a dengan temperatur heater di variasikan 600, 800, 900, 1000, 1200, dan 1400 yang diolah kedalam bentuk simulasi termodinamika setelah itu dilakukan simulasi penggantian refrigeran R152a dan R407c selanjutnya grafik rasio konsumsi energi spesifik dapat disajikan sebagai perbandingan antara refrigeran didapat bahwa penggunaan daya listrik akan menurun jika heater dan blower berada pada titik variabel terendahnya serta dibandingkan dengan perbedaan pengaruh refrigeran berdasarkan perbedaan entalphy dari refrigeran tersebut sehingga konsumsi energi terendah akan ada pada R-152a, penggantian refrigeran dari sebelumnya R134a menjadi R152a akan mempengaruhi dampak terhadap global warming jika alat ini menjadi kebutuhan masyarakat umum. ......Utilization dehumidifier as a spray dryer system dehumidification can save energy consumption, the experiment is found in a graphic simulation for comparison between the refrigerant R-134A, R-152A and R407C from the aspect of energy consumption dehumidifier is used in a spray dryer when signing heater is known that the mass flow air from the blower is 150 lpm, 300 lpm and 450 lpm on the conditions of the experiment R-134a with temperatures heater in varying 600, 800, 900, 1000, 1200, and 1400 were processed into the form of a simulation of thermodynamics after it conducted a simulation replacement refrigerant R152a and R407c the next graph the ratio of the specific energy consumption can be expressed as the ratio between the refrigerant found that the power consumption will decrease if the heater and blower are at the point variable lows as well as compared to the differences in the effect of refrigerant based on the difference entalphy of refrigerant so that the lowest energy consumption will be on R-152A , the replacement of the previous R134a refrigerant R152a will be affecting the impact on global warming if the tool is to be the needs of the general public.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62771
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bintang Mohammad
Abstrak :
Pengering semprot merupakan pilihan dari beberapa proses penyimpanan bahan produk agar menjadi tahan lama, ringkas dan mudah dalam pendistribusiannya. Pengering semprot umumnya beroperasi pada temperatur tinggi >100 0C , hal ini merupakan kendala bagi material yang sensitif terhadap panas, seperti pada obat-obatan khusus, vitamin dan lain-lain. Beberapa upaya untuk menurunkan temperatur telah dilakukan, salah satunya adalah eksperimentasi dengan mengkombinasikan dehumidifier dengan kondenser ganda terhadap pengering semprot. Penggunaan dehumidifier yang berbasis sistem refrigerasi digunakan untuk menghasilkan udara yang lebih kering dan menaikkan suhu udara yang digunakan sebelum masuk ke ruang pemanas udara merupakan solusi dari kekurangan pengering semprot dalam mengawetkan makanan. Pada penelitian ini dilakukan variasi debit udara sesesar 100, 150, 200, dan 250 lpm kemudian variasi temperatur pemanas udara sebesar 60 0, 900, 1200,1500 C dan variasi tekanan refrigerant masuk ke dalam evaporator untuk mendapatkan nilai koefisien kinerja COP dan nilai Rasio Konsumsi Energi Spesifik RKES . Dari penelitian yang telah dilakukan didapatkan nilai nilai koefisien kinerja COP maksumim sistem refrigerasi yang digunakan sebagai dehumidifier sebesar 1,14 pada debit udara 250 lpm dan nilai Rasio Konsumsi Energi Spesifik RKES 0,93. Hal tersebut dapat terjadi dikarenakan penurunkan kinerja pemanas udara secara signifikan, jika dibanding dengan tidak menggunakan sistem dehumidifier. Disamping itu, udara pengering yang menuju ke ruang pengering menjadi jauh lebih kering dikarenakan tingkat kelembaban yang rendah setelah melalui sistem dehumidifier, sehingga dapat mempercepat proses laju pengeringan. Dari penelitian ini dapat disimpulkan sistem penegring senprot menggunakan dehumidifier lebih rendah konsumsi energi spesifik nya dibandingan dengan tanpa dehumidifier sehingga lebih menguntungkan.
Spray dryer is a selection of some of the material storage product to be durable, quick and easy distribution. Spray dryers generally operate at high temperatures 1000 C , this is an obstacle for material that is sensitive to heat, such as in specialty pharmaceuticals, vitamins and others. Several attempts have been made to lower the temperature, one of which is the experimentation with combining dehumidifier with a double condenser to the spray dryer. The use of a dehumidifier based refrigeration system is used to produce drier air and raise the temperature of the air that is used prior to entry into the room air heating a solution of the deficiencies in the spray dryer preserve food. In this research variation sesesar air discharge 100, 150, 200, and 250 lpm then air heater temperature variation of 60 0, 900, 1200.1500 C and variations in pressure refrigerant into the evaporator to get the value of the coefficient of performance COP and value Specific Energy consumption ratio RKES . From the research that has been done obtained values of the coefficient of performance COP maksumim refrigeration system that is used as a dehumidifier at 1.14 on the air flow of 250 lpm and value Specific Energy Consumption Ratio RKES 0.93. .It Can occur due penurunkan air heating performance significantly, when compared to not using the dehumidifier system. In addition, the air conditioning that led to the drying chamber becomes much drier due to low humidity levels after a dehumidifier system, so as to accelerate the process of drying rate. From this study we can conclude senprot penegring system using a dehumidifier lower its specific energy consumption compared with without dehumidifier thus more profitable.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66663
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>