Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Fuchs, Christian
Abstrak :
Now more than ever, we need to understand social media - the good as well as the bad. We need critical knowledge that helps us to navigate the controversies and contradictions of this complex digital media landscape. Only then can we make informed judgements about what's happening in our media world, and why. Showing the reader how to ask the right kinds of questions about social media, Christian Fuchs takes us on a journey across social media, delving deep into case studies on Google, Facebook, Twitter, WikiLeaks and Wikipedia. The result lays bare the structures and power relations at the heart of our media landscape. This book is the essential, critical guide for all students of media studies and sociology. Readers will never look at social media the same way again.
London: Sage Publications, 2014
e20503020
eBooks  Universitas Indonesia Library
cover
Faraya Agatha Putri
Abstrak :

Karya sastra merupakan hal yang perlu dilestarikan, karena melestarikan karya sastra juga berarti melestarikan bahasa. Upaya pelestarian dapat dilakukan dengan berbagai cara, salah satunya dengan memanfaatkan teknologi. Implementasi upaya yang dapat dilakukan dengan memanfaatkan teknologi adalah dengan melakukan ekstraksi entitas karya sastra secara otomatis. Dari data ekstraksi tersebut dapat dibangun knowledge base agar informasi menjadi lebih terstruktur dan dapat diatur dengan mudah. Penelitian ini menggunakan sumber data dari 435 halaman sastrawan Indonesia pada Wikipedia berbahasa Indonesia. Terdapat dua proses ekstraksi pada penelitian ini, yaitu ekstraksi daftar dan ekstraksi tabel. Pada akhir penelitian ini, diperoleh 4953 entitas karya sastra yang terpetakan ke dalam 14 kategori karya sastra. Kualitas hasil ekstraksi pada penelitian ini diukur dengan nilai precision dan recall. Nilai precision dan recall didapatkan dari hasil perbandingan data hasil ekstraksi dengan data golden result yang merupakan data yang disusun secara manual dari halaman-halaman sastrawan Indonesia. Nilai precision dan recall pada penelitian ini adalah 0.608 untuk precision dan 0.571 untuk recall.


Literature work needs to be preserved because it also means preserving a language. There are many preserving methods, one of them is using technology. The implementation of using technology as a preserving method is by automatically extracting the literature work entities. From that data extraction, a knowledge base can be built to make the information more structured and easy to manage. This research used 435 Wikipedia pages about Indonesian litterateur as a source of data extraction. Two extraction processes have been implemented, which are list extraction and table extraction. At the end of this research, 4953 literature work entities that mapped into 14 literature work categories were obtained. The quality of the data extraction results in this research was measured by precision and recall value. The precision and recall value was obtained from comparing the data extraction result with the golden result which is data that was organized manually from Wikipedia pages about Indonesian litterateur. The precision and recall value of this research are 0.608 for precision value and 0.571 for recall value.

Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alif Ahsanil Satria
Abstrak :
Pengenalan entitas bernama (named-entity recognition atau NER) adalah salah satu topik riset di bidang pemrosesan bahasa alami (natural language processing atau NLP). Pengenalan entitas bernama merupakan langkah awal mengubah unstructured text menjadi structured text. Pengenalan entitas bernama berguna untuk mengerjakan NLP task yang lebih high-level seperti ekstraksi informasi (information extraction atau IE), Question Answering (QA), dan lain-lain. Penelitian ini memanfaatkan data berita dan wikipedia masing-masing sebanyak 200 dokumen yang digunakan untuk proses pengujian dan pelatihan. Penelitian ini mencoba mengeksplorasi entitas bernama baru yang tidak sebatas Person, Location, dan Organization. Named entity baru tersebut adalah Event, Product, Nationalities Or Religious or Political groups (NORP), Art, Time, Language, NonHuman or Fictional Character (NHFC), dan Miscellaneous. Jadi, penelitian ini menggunakan 11 entitas bernama. Dalam penelitian ini, permasalahan tersebut dipandang sebagai sequence labelling. Penelitian ini mengusulkan penggunaan model conditional random field sebagai solusi permasalahan ini. Penelitian ini mengusulkan penggunaan fitur tambahan seperti kata sebelum, kata sesudah, kondisi huruf kapital di awal kata, dan lain-lain, serta word embedding. Penelitian ini menghasilkan performa dengan nilai F-measure terbaik sebesar 67.96% untuk data berita dan 67.09% untuk data wikipedia. ......
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library