Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Nafizatus Salmi
Abstrak :
ABSTRACT
Kanker telah dikenal sebagai penyakit yang terdiri dari beberapa jenis berbeda. Kanker adalah penyakit yang mengancam jiwa di dunia saat ini. Ada begitu banyak jenis kanker di dunia, salah satunya adalah kanker usus besar, di mana kanker ini adalah salah satu pembunuh nomor satu di dunia. Banyak pembelajaran mesin telah diterapkan dalam klasifikasi kanker. Penulis membandingkan model Naïve Bayes Classifier dan Support Vector Machine (SVM) dalam klasifikasi kanker usus besar. Naïve Bayes Classifier adalah teknik prediksi berbasis probabilitas sederhana berdasarkan pada penerapan teorema Bayes (atau aturan Bayes) dengan asumsi kemandirian yang kuat. Sedangkan konsep dasar metode SVM adalah membentuk bidang atau hyperplane optimal yang memisahkan data menjadi bidang-bidang yang memisahkan data ke dalam setiap kelas. Kedua metode menghasilkan akurasi tinggi hingga 95,24% untuk Naïve Bayes Classifier dan 94,05% untuk SVM dengan kernel linier.
ABSTRACT
Cancer has been known as a disease that consists of several different types. Cancer is a life-threatening disease in the world today. There are so many types of cancer in the world, one of which is colon cancer, where this cancer is one of the number one killers in the world. Much machine learning has been applied in the classification of cancer. The author compares the Naïve Bayes Classifier and Support Vector Machine (SVM) models in the classification of colon cancer. Naïve Bayes Classifier is a simple probability-based prediction technique based on the application of the Bayes theorem (or Bayes rule) with a strong assumption of independence. While the basic concept of the SVM method is to form an optimal plane or hyperplane that separates data into fields that separate data into each class. Both methods produce high accuracy up to 95.24% for Naïve Bayes Classifier and 94.05% for SVM with linear kernels.
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail
Abstrak :

Kanker adalah penyakit yang disebabkan akibat pertumbuhan (pembelahan) tidak normal dari sel jaringan tubuh. Kanker dapat menyebar ke jaringan lain yang terdekatnya. Menurut World Health Organization (WHO), tercatat pada tahun 2018 ada sebanyak 9,6 juta jiwa yang meninggal pada tahun 2018. Biasanya untuk dapat mengetahui sesorang terjangkit kanker atau tidak, ahli medis akan melakukan biopsi apabila disarankan oleh dokter. Namun, sekarang terknologi semakin berkembang, para saintis menggunakan metode komputasi dalam pendekatan pengolahan citra untuk meningkatkan penilaian histopatologis. Penelitian – penelitian sebelumnya telah menunjukan bagaimana machine learning dapat membantu pendeteksian kanker salah satunya mengguakan metode data scaling. Penelitian ini membahas algoritma data scaling membantu meningkatkan akurasi dalam proses klasifikasi kanker usus besar menggunakan Support Vector Machine. Hasil dari penelitian ini, algoritma data scaling memiliki nilai akurasi yang lebih tinggi dibandingkan dengan yang tidak menggunakannya.

 


Cancer is a disease caused by abnormal growth (division) of body tissue cells. Cancer can spread to other tissues closest to it. According to the World Health Organization (WHO), it was noted that in 2018 there were 9.6 million people who dies in 2018. Usually to be able to find out if someone has contracted cancer, a medical expert will do a biopsy if advised by a doctor. However, now that technology is growing, scientists use computational methods in image processing approaches to improve histopathological assessment. Previous studies have shown how machine learning can help detect cancer, one of which uses the method of data scaling. This study discusses the data scaling algorithm help to improve accuracy in the process of classification of colon cancer using Support Vector Machine. The result of this study, the data scaling algorithm has a higher accuracy than those who did not use it.

2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library