Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muhammad Rizky Adha
Abstrak :
ABSTRACT
Pemodelan regresi telah diterapkan dalam perbankan ritel karena kemampuannya dalam menganalisis data kontinu maupun diskrit. Hal tersebut merupakan alat yang penting dalam penilaian risiko kredit, stress testing, serta evaluasi aset kredit. Pada tugas akhir ini, pendekatan yang digunakan adalah dengan menggunakan model regresi logistik multinomial untuk mengetahui faktor-faktor yang memengaruhi terjadinya default dan attrition pada suatu kredit. Selain itu, pada tugas akhir ini juga akan diperkenalkan pendekatan regresi spline dengan menggunakan truncated power basis untuk memodelkan fungsi hazard. Fleksibilitas dari fungsi spline memberikan kemampuan untuk memodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kemudian, dengan menggunakan regresi spline dan regresi logistik multinomial, akan diperoleh sebuah hasil dan interpretasi yang lebih baik. Terdapat beberapa kelebihan dari penggunaan kedua model tersebut. Pertama, dengan menggunakan fungsi regresi spline yang fleksibel, dapat dimodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kedua, mudah dipahami dan diterapkan, dan bentuk parametrik model regresi logistik multinomial yang sederhana dapat memudahkan dalam interpretasi model. Ketiga, memiliki kemampuan untuk prediksi. Pada akhir pembahasan, dengan menggunakan sebuah data kartu kredit akan dilakukan pengaplikasian dari model regresi logistik multinomial dan regresi spline, dilengkapi dengan penjelasan secara statistika dan akurasi prediksi.
ABSTRACT
Regression modeling has been adapted in retail banking because of its capability to analyze the continuous and discrete data. It is an important tool for credit risk scoring, stress testing and credit asset evaluation. In this thesis, the approach used is multinomial logistic regression model to gain the information regarding the factors that affect the occurrence of default and attrition. In addition, this thesis will also introduce spline regression approach using truncated power basis to model the hazard function. The flexibility of spline function allows us to model the nonlinear and irregular shapes of the hazard functions. Then, by using spline regression and multinomial logistic regression model, there will be a better result and interpretation. There are several advantages by using those both models. First, by using the flexible spline regression function, it can model nonlinear and irregular shapes of the hazard functions. Second, it is easy to understand and implement, and its simple parametric form from multinomial logistic regression model can make it easy in model interpretation. Third, the model has the ability to do prediction. Furthermore, by using a credit card dataset, we will demonstrate how to build these model, and we also provide statistical explanatory and prediction accuracy.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafa Khairun Nisa
Abstrak :
Dalam analisis regresi, terdapat dua pendekatan, yaitu pendekatan regresi parametrik dan pendekatan regresi nonparametrik. Dalam regresi parametrik, bentuk dari kurva regresi sudah diasumsikan, sedangkan dalam regresi nonparametrik, bentuk dari kurva regresi tidak diketahui. Salah satu regresi nonparametrik yang dapat digunakan adalah regresi spline dengan menggunakan truncated power basis. Regresi spline adalah suatu polinomial sepotong-sepotong yang dihubungkan oleh titik-titik bersama yang disebut dengan knot. Pada regresi spline, estimasi parameter dilakukan dengan menggunakan metode OLS (Ordinary Least Square). Namun, dengan metode OLS akan menyebabkan overparameterized dan pada plot taksiran kurva regresi akan terjadi fluktuatif apabila pemilihan jumlah knot terlalu banyak. Untuk itu, diperlukan suatu tambahan kendala yang didalamnya mengandung smoothing parameter sehingga diperoleh taksiran yang ideal. Metode estimasi parameter ini dikenal dengan metode PLS (Penalized Least Square). Regresi spline yang menggunakan estimasi parameter PLS (Penalized Least Square) disebut dengan regresi penalized spline. Pada contoh penerapan data, model terbaik dipilih untuk regresi penalized spline truncated power basis linier dengan 23 buah knot dan smoothing parameter sebesar 2.44. ......In analysis regression, there are two approach, that is parametric regression approach and nonparametric regression approach. In parametric regression, the shape of regression curve is assumed, whereas in the nonparametric regression, the shape of curve is unknown. One of the nonparametric regression can be used is spline regression using truncated power basis. Spline regression is piecewise polynomials that connect at join points called knots. In spline regression, parameter estimation were fit by OLS (Ordinary Least Square) method. However, the OLS method will lead to overparameterized and in the plot of estimated regression curve will be fluctuative when using too much knots. Therefore, it needs an additional constraint which contain smoothing parameter, so that will result an ideally fit. This parameter estimation method known as PLS (Penalized Least Square) method. Spline regression that using PLS method is called by penalized spline regression. In the example application of data, the best model is choosen for penalized spline regression truncated power basis linear with 23 knots and smoothing parameter at 2.44.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S972
UI - Skripsi Open  Universitas Indonesia Library