Ditemukan 4 dokumen yang sesuai dengan query
Alvin Subakti
"Text clustering adalah teknik pengelompokan teks sehingga teks di dalam kelompok yang sama memiliki tingkat similaritas yang lebih tinggi satu sama lain dibandingkan dengan teks pada kelompok yang berbeda. Proses pengelompokkan teks secara manual membutuhkan waktu dan sumber daya yang banyak sehingga digunakan machine learning untuk melakukan pengelompokan secara otomatis. Representasi dari teks perlu diekstraksi sebelum dimasukkan ke dalam model machine learning. Metode yang umumnya digunakan untuk mengekstraksi representasi data teks adalah TFIDF. Namun, metode TFIDF memiliki kekurangan yaitu tidak memperhatikan posisi dan konteks penggunaan kata. Model BERT adalah model yang dapat menghasilkan representasi kata yang bergantung pada posisi dan konteks penggunaan suatu kata dalam kalimat. Penelitian ini menganalisis kinerja model BERT sebagai metode representasi data teks dengan membandingkan model BERT dengan TFIDF. Selain itu, penelitian ini juga mengimplementasikan dan membandingkan kinerja metode ekstraksi dan normalisasi fitur yang berbeda pada representasi teks yang dihasilkan model BERT. Metode ekstraksi fitur yang digunakan adalah max dan mean pooling. Sementara itu, metode normalisasi fitur yang digunakan adalah identity, layer, standard, dan min-max normalization. Representasi teks yang diperoleh dimasukkan ke dalam 4 algoritma clustering berbeda, yaitu k-means clustering, eigenspace-based fuzzy c-means, deep embedded clustering, dan improved deep embedded clustering. Kinerja representasi teks dievaluasi dengan menggunakan metrik clustering accuracy, normalized mutual information, dan adjusted rand index. Hasil simulasi menunjukkan representasi data teks yang dihasilkan model BERT mampu mengungguli representasi yang dihasilkan TFIDF pada 28 dari 36 metrik. Selain itu, implementasi ekstraksi dan normalisasi fitur yang berbeda pada model BERT memberikan kinerja yang berbeda-beda dan perlu disesuaikan dengan algoritma yang digunakan.
Text clustering is a task of grouping a set of texts in a way such that text in the same group will be more similar toward each other than to those from different group. The process of grouping text manually requires significant amount of time and labor. Therefore, automation utilizing machine learning is necessary. Text representation needs to be extracted to become the input for machine learning models. The common method used to represent textual data is TFIDF. However, TFIDF cannot consider the position and context of a word in a sentence. BERT model has the capability to produce text representation that incorporate position and context of a word in a sentence. This research analyzed the performance of BERT model as a text representation method by comparing it with TFIDF. Moreover, various feature extraction and normalization methods are also applied in text representation from BERT model. Feature extraction methods used are max and mean pooling. On the other hand, feature normalization methods used are identity, layer, standard, and min-max normalization. Text representation obtained become an input for 4 clustering algorithms, k-means clustering, eigenspace-based fuzzy c-means, deep embedded clustering, and improved deep embedded clustering. Performance of text representations in text clustering are evaluated utilizing clustering accuracy, normalized mutual information, and adjusted rand index. Simulation results showed that text representation obtained from BERT model outperforms representation from TFIDF in 28 out of 36 metrics. Furthermore, different feature extraction and normalization produced varied performances. The usage of these feature extraction and normalization must be altered depending on the text clustering algorithm used."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Revan Dzaky Fahrezi
"Penelitian ini bertujuan untuk mengintegrasikan analisis sentimen dan teknik pengelompokan teks (text clustering) dalam mengevaluasi kualitas layanan berdasarkan model SERVQUAL, yang mencakup lima dimensi utama: Tangibility, Responsiveness, Reliability, Assurance, dan Empathy. Metode yang digunakan meliputi Naïve Bayes, Support Vector Machine, dan K-Nearest Neighbor untuk melakukan klasterisasi sentimen yang bervariasi di setiap dimensi SERVQUAL. Hasil analisis menunjukkan bahwa sentimen pelanggan berbeda di setiap dimensi, dengan beberapa area menonjol dalam sentimen negatif atau positif. Teknik clustering teks membantu mengidentifikasi tema-tema umum dan masalah yang sering dihadapi pelanggan. Kesimpulan dari penelitian ini adalah pendekatan analisis sentimen dan text clustering memberikan wawasan yang lebih detail dan mendalam mengenai kualitas layanan, yang memungkinkan perusahaan untuk mengambil tindakan yang lebih tepat dalam meningkatkan setiap dimensi SERVQUAL untuk meningkatkan kepuasan dan loyalitas pelanggan secara keseluruhan
This study aims to integrate sentimen analysis and text clustering techniques to evaluate service quality based on the SERVQUAL model, which includes five main dimensions: Tangibility, Responsiveness, Reliability, Assurance, and Empathy. The methods used include Naïve Bayes, Support Vector Machine, and K-Nearest Neighbor to perform sentimen clustering that varies across each SERVQUAL dimension. The analysis results show that customer sentimens differ across each dimension, with certain areas standing out in either negatif or positive sentimens. Text clustering techniques help identify common themes and issues frequently faced by customers. The conclusion of this study is that the sentimen analysis and text clustering approach provides more detailed and in-depth insights into service quality, enabling companies to take more precise actions in enhancing each SERVQUAL dimension to increase overall customer satisfaction and loyalty."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Alvin Subakti
"Text clustering adalah teknik pengelompokan teks sehingga teks di dalam kelompok yang sama memiliki tingkat similaritas yang lebih tinggi satu sama lain dibandingkan dengan teks pada kelompok yang berbeda. Proses pengelompokkan teks secara manual membutuhkan waktu dan sumber daya yang banyak sehingga digunakan machine learning untuk melakukan pengelompokan secara otomatis. Representasi dari teks perlu diekstraksi sebelum dimasukkan ke dalam model machine learning. Metode yang umumnya digunakan untuk mengekstraksi representasi data teks adalah TFIDF. Namun, metode TFIDF memiliki kekurangan yaitu tidak memperhatikan posisi dan konteks penggunaan kata. Model BERT adalah model yang dapat menghasilkan representasi kata yang bergantung pada posisi dan konteks penggunaan suatu kata dalam kalimat. Penelitian ini menganalisis kinerja model BERT sebagai metode representasi data teks dengan membandingkan model BERT dengan TFIDF. Selain itu, penelitian ini juga mengimplementasikan dan membandingkan kinerja metode ekstraksi dan normalisasi fitur yang berbeda pada representasi teks yang dihasilkan model BERT. Metode ekstraksi fitur yang digunakan adalah max dan mean pooling. Sementara itu, metode normalisasi fitur yang digunakan adalah identity, layer, standard, dan min-max normalization. Representasi teks yang diperoleh dimasukkan ke dalam 4 algoritma clustering berbeda, yaitu k-means clustering, eigenspace-based fuzzy c-means, deep embedded clustering, dan improved deep embedded clustering. Kinerja representasi teks dievaluasi dengan menggunakan metrik clustering accuracy, normalized mutual information, dan adjusted rand index. Hasil simulasi menunjukkan representasi data teks yang dihasilkan model BERT mampu mengungguli representasi yang dihasilkan TFIDF pada 28 dari 36 metrik. Selain itu, implementasi ekstraksi dan normalisasi fitur yang berbeda pada model BERT memberikan kinerja yang berbeda-beda dan perlu disesuaikan dengan algoritma yang digunakan.
Text clustering is a task of grouping a set of texts in a way such that text in the same group will be more similar toward each other than to those from different group. The process of grouping text manually requires significant amount of time and labor. Therefore, automation utilizing machine learning is necessary. Text representation needs to be extracted to become the input for machine learning models. The common method used to represent textual data is TFIDF. However, TFIDF cannot consider the position and context of a word in a sentence. BERT model has the capability to produce text representation that incorporate position and context of a word in a sentence. This research analyzed the performance of BERT model as a text representation method by comparing it with TFIDF. Moreover, various feature extraction and normalization methods are also applied in text representation from BERT model. Feature extraction methods used are max and mean pooling. On the other hand, feature normalization methods used are identity, layer, standard, and min-max normalization. Text representation obtained become an input for 4 clustering algorithms, k-means clustering, eigenspace-based fuzzy c-means, deep embedded clustering, and improved deep embedded clustering. Performance of text representations in text clustering are evaluated utilizing clustering accuracy, normalized mutual information, and adjusted rand index. Simulation results showed that text representation obtained from BERT model outperforms representation from TFIDF in 28 out of 36 metrics. Furthermore, different feature extraction and normalization produced varied performances. The usage of these feature extraction and normalization must be altered depending on the text clustering algorithm used."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Jo, Taeho
"This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management."
Switzerland: Springer Cham, 2019
e20501288
eBooks Universitas Indonesia Library