Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17 dokumen yang sesuai dengan query
cover
Mayang Nurul Aulia
Abstrak :
Performa akademik adalah bagian penting dari suatu sekolah. Saat ini, sebagian besar sekolah di Indonesia masih jarang melakukan klasifikasi performa akademik siswa, sehingga diperlukan metode yang tepat untuk mengklasifikasikan siswa berdasarkan perfroma akademiknya.  Pada peneltian ini digunakan metode Nave Bayes Classifier (NBC) dan metode Support Vector Machine (SVM) untuk mengklasifikasikan performa akademik siswa SMAN 38 Jakarta. Metode NBC menghasilkan tingkat akurasi tertinggi sebesar 96%, recall 100%, precision 92.68% dan %. Sedangkan metode SVM dengan kernel linier menghasilkan tingkat akurasi tertinggi sebesar 98%, recall 100%, precision 96.42% dan f1-score. ......Academic performance is an important part of a school. At present, most schools in Indonesia rarely classify students’ academic performance, so we need the right method to classify students based on their academic performance. In this research, the Nave Bayes Classifier (NBC) and Support Vector Machine (SVM) methods are used to classify academic performance of SMAN 38 Jakarta students’. The NBC method produces the highest accuracy 96%, recall 100%, precision 92.68% and f1-score  While the SVM method produces the highest accuracy 98%, recall 100%, precision 96.42% and f1-score  on linear kernels.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deneng Eka Putra
Abstrak :
Pada perusahaan penerbangan, gangguan atau disrupsi adalah hal biasa terjadi. Sangat penting bagi industri penerbangan untuk memperkirakan atau memprediksi sumber gangguan/disrupsi untuk mengurangi biaya karena penundaan atau pembatalan jadwal keberangkatan. Ada banyak faktor gangguan pada maskapai yang menyebabkan penundaan atau pembatalan jadwal, seperti masalah mekanis pesawat (maintenance), kondisi cuaca, ketidakhadiran kru karena sakit, keamanan, dll. Dalam penelitian ini, peneliti fokus menyoroti disrupsi yang disesbabkan oleh ketidakhadiran pilot  / kru kokpit karena sakit. Metode yang digunakan untuk memprediksi kru kokpit yang sakit,didasarkan pada data yang diberikan pada periode sebelumnya. Classification and Regression Tree (decision tree) menggunakan fitur dari kru kokpit sebagai variabel untuk memprediksi ketidakhadiran pilot pada periode berikutnya. Data asli / real pada tahun 2017 digunakan sebagai data training dan data uji keakuratan model. Hasil penelitian menunjukkan bahwa data dari administrasi (data HR) dan data riwayat penyakit / riwayat ujian medis dapat menjadi prediktor untuk membangun model prediksi kru kokpit yang akan sakit. Dalam penelitian ini sebagian besar pilot yang memiliki riwayat sakit atau pernah gagal dalam ujian medis dan pilot yang ditugaskan lebih dari 78 jam penerbangan memiliki kemungkinan lebih besar untuk sakit di masa mendatang. Menurut penelitian juga, perusahaan juga dapat melakukan penghematan rata-rata Rp 900.000.000 per bulan jika dapat memprediksi jumlah pilot yang sesuai untuk menutupi pilot yang absen.
Penelitian ini juga mengeksplorasi fitur yang membantu manajer maskapai menemukan karakteristik pilot yang akan absen karena sakit pada periode berikutnya dan menentukan jumlah kokpit kru cadangan yang harus disiapkan oleh maskapai untuk menghindari gangguan (delay atau cancel). ...... In an airlines company, disruption is a common thing to happen during operations. It’s significant for the airline's industries to forecast or predict the source of disruptions to reduce the cost of schedule recovery due to schedule delay or cancel. There are many factors of disruption in the airlines which causes schedule delay or cancel, such as the mechanical problem of aircraft (maintenance), weather condition, crew sickness, security, etc. In this research, it highlights the absenteeism of the pilot due to sickness. A supervised learning method is proposed to predict the sickness of cockpit crew based on data given on the previous period. The classification and regression tree/decision tree algorithm use the feature of the cockpit crew as predictor variable to predict the future absenteeism of the pilot. The real data in 2017 is used to train and test the accuracy of the model. The result shows that administrative or human resource and historical sickness data can be the predictor to build model for cockpit crew sickness prediction. In this research most pilot who has sick history or used to fail in medical exam and pilot who assigned more than 78 flight hours has more probability for being sick in the future period. According to the research approximately IDR 900.000.000 per month in average can be saved by company if it can predict the suitable number of reserved pilots to cover the absence pilot.This research also explores the other association rules that help the airline managers find the characteristics of the pilot which are going to be absent due to sickness in next period and determines the number of reserved crews should be prepared by airlines to avoid the disruption.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2019
T54675
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadya Asanul Husna
Abstrak :
Inhibitor DPP-4 adalah pendekatan baru yang menjanjikan untuk pengobatan diabetes tipe-2 dengan risiko rendah hipoglikemia. Pemodelan hubungan kuantitatif struktur-aktivitas (QSAR) adalah pemodelan yang digunakan untuk menyaring basis data besar suatu senyawa untuk menentukan sifat biologis molekul kimia berdasarkan struktur kimianya. Pada tesis ini pemodelan QSAR yang digunakan adalah QSAR klasifikasi dan QSAR regresi. Sebelum membuat model QSAR akan melakukan esktraksi ciri pada struktur molekul (SMILES). Hasil ekstraksi ciri tersebut kemudian akan digunakan sebagai masukan untuk metode rotation forest kasus klasifikasi dan kasus regresi. Model QSAR klasifikasi akan memprediksi molekul aktif dan tidak aktif pada inhibitor DPP-IV. Sedangkan model QSAR regresi akan memprediksi nilai aktivitas IC50 inhibitor DPP-IV. Pada penelitian ini untuk kasus klasifikasi dan regresi juga membandingkan performa model rotation forest menggunakan matriks rotasi PCA dengan rotation forest menggunakan matriks rotasi Sparse PCA. Hasil penelitian ini menunjukkan bahwa model QSAR regresi menggunakan rotation forest dengan matriks rotasi PCA (RFR(PCA)) memperoleh koefisien korelasi kuadrat 29.2% dengan RMSE 45%. Sementara itu, menggunakan rotation forest dengan matriks rotasi Sparse PCA (RFR(SPCA)) memperoleh koefisien korelasi kuadrat 27.1% dengan RMSE 45.6%. Pada QSAR klasifikasi persentase banyaknya molekul yang aktif sangat besar dibandingkan yang molekul tidak aktif, hal ini dapat menyebabkan nilai evaluasi berbeda. SMOTE (Synthetic Minority Oversampling Technique) merupakan salah satu metode untuk menangani data tidak seimbang tersebut dengan cara membangkitkan data buatan. Hasil penelitian ini menunjukkan bahwa model QSAR klasifikasi menggunakan rotation forest dengan matriks rotasi PCA (RFC(PCA)) memperoleh performa tertinggi dalam memprediksi molekul aktif dan tidak aktif, yaitu nilai MCC 77.7% dengan nilai akurasi sebesar 89%, sensitivitas 89.6%, dan spesifisitas 88.1%. Sementara itu, model QSAR klasifikasi menggunakan rotation forest dengan matriks rotasi SPCA (RFC(SPCA)) memperoleh performa tertinggi, yaitu nilai MCC 80.9% dengan nilai akurasi sebesar 90.5%, sensitivitas 90.8%, dan spesifisitas 90.2%. ......DPP-4 inhibitors are a new approach for the treatment of type 2 diabetes with a low risk of hypoglycemia. The Quantitative Structure-Activity Relationship (QSAR) model is a model used to filter large databases of compounds to determine the biological properties of chemical molecules based on their chemical structure. The QSAR modeling that is used in this research is QSAR classification and QSAR regression. Before creating the model, QSAR will perform feature extraction on the molecular structure (SMILES). The results of the feature extraction will be used as inputs for the rotation forest method of the classification and regression cases. The QSAR classification model predicts active and inactive molecules in DPP-IV inhibitors, while the regression QSAR model predicts the value of IC50 DPP-IV inhibitor activity. In this study, the classification and regression cases are also comparing the performances between the rotation forest model using the PCA rotation matrix and the rotation forest model using the Sparse PCA rotation matrix.  The results of this study indicate that the QSAR regression model using rotation forest with the rotation matrix PCA (RFR (PCA)) obtained a squared correlation coefficient of 29.2% with RMSE 45%. Meanwhile, using rotation forest regression with the Sparse PCA (RFR (SPCA)) rotation matrix obtained a quadratic correlation coefficient of 27.1% with RMSE 45.6%. In the QSAR classification, the percentage of active molecules is very large compared to inactive molecules, this can cause different evaluation values. SMOTE (Synthetic Minority Oversampling Technique) is one method for handling such unbalanced data by generating artificial data. The results of this study indicate that the classification QSAR model using rotation forest classification with PCA (RFC (PCA)) rotation matrix obtained the highest performance in predicting active and inactive molecules as follows: MCC value of 77.7% with an accuracy value of 89%, sensitivity value of 89.6% and specificity value of 88.1%. Meanwhile, the QSAR classification model using rotation forest classification with the SPCA rotation matrix (RFC (SPCA)) obtained the highest performance as follows: MCC value of 80.9% with an accuracy value of 90.5%, sensitivity value of 90.8%, and specificity value of 90.2%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Arief Pratama
Abstrak :
Sebagai salah satu industri terbesar di dunia, pemasaran fashion pada platform ecommerce menarik jutaan pengguna setiap harinya. Salah satu fitur yang penting untuk dimiliki platform ecommerce adalah kemampuan mencari produk fashion menggunakan foto pengguna sebagai query. Hasil pencarian yang akurat akan memberikan manfaat bagi pengguna dan bagi pelaku bisnis. Persoalan ini sangat menantang karena adanya perbedaan domain antara citra query yang diunggah pengguna dengan citra galeri produk yang menjadi target pencarian. Perolehan citra lintas domain dapat diselesaikan dengan metode konvensional seperti pemelajaran metrik menggunakan dataset berlabel. Namun metode ini tidaklah feasible dalam jangka panjang mengingat selalu bertambahnya inovasi di bidang fashion sehingga dibutuhkan anotasi terhadap citra yang berkesinambungan agar model tetap relevan. Pada penelitian ini diusulkan penggunaan self-supervised learning untuk meningkatkan kebermanfaatan data tanpa label dan mengurangi ketergantungan terhadap data berlabel. Pelatihan dengan metode ini menghasilkan sebuah encoder CNN dengan arsitektur ResNet-50, yang dilatih dengan sekumpulan citra tidak berlabel, agar mampu menghasilkan fitur umum dari citra. Model ini kemudian di-finetune dengan data berlabel agar mampu melakukan downstream task, yaitu perolehan citra lintas domain. Untuk meningkatkan hasil perolehan, dilakukan structural matching menggunakan Wasserstein distance (optimal transport) terhadap fitur spasial luaran encoder CNN pada saat inference dan finetuning. Selain itu, structural matching juga dapat menjelaskan bagian mana dari citra yang berkontribusi atas keseluruhan kesamaan atau jarak. Hasil menunjukkan bahwa kinerja encoder yang dilatih dengan self-supervised learning secara kuantitatif masih belum melampaui kinerja encoder baseline ImageNet, dengan perbedaan 1-2% dari sisi akurasi dan mAP menggunakan Triplet Loss, dan 6-10% dengan InfoNCE. Structural matching secara umum dapat meningkatkan hasil perolehan pada encoder yang dilatih dengan self-supervised learning. Hasil kualitatif menunjukkan bahwa semua varian model mampu mencari citra yang mirip dengan query, baik dari sisi kategori, warna, bentuk, dan motif. ......Being one of the largest industries in the world, fashion marketing on ecommerce platforms attracts millions of users every day. One of the essential features for an ecommerce platform is the ability to retrieve fashion items using user photos as queries. Good search results will yield benefits for users and for businesses. This problem is challenging due to the domain differences of the query images uploaded by the users and of product gallery images as retrieval targets. Cross-domain image retrieval can be accomplished by conventional methods such as metric learning using labeled datasets. However, this method is not feasible in the long term since innovations in this sector are fast such that continuous image annotations are required for the model to stay relevant. In this study, we propose to use self-supervised learning to increase usefulness of unlabeled data and to reduce dependency on labeled data. Training with this method produces a CNN encoder with ResNet-50 architecture, trained on a collection of unlabeled images, to infer generic features of images. The model is then finetuned with labeled data so that it can perform the downstream task, which is cross-domain image retrieval. To improve retrieval results, we performed structural matching by calculating Wasserstein distance (optimal transport) using spatial features inferred from CNN encoder during inference and finetuning. In addition, structural matching can also explain which parts of two images contribute to overall similarity or distance. Results show that an encoder trained with self-supervision quantitatively has not yet outperformed off-the-shelf ImageNet encoder baseline, with a difference in terms of accuracy and mAP of 1-2% for Triplet Loss, and 6-10% for InfoNCE. Generally, structural matching can improve retrieval results for self-supervised encoders. Qualitative results show that all model variants are able to retrieve images similar to the query, in terms of categories, colors, shapes, and patterns.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bella Septina Ika Hartanti
Abstrak :
Bencana banjir merupakan salah satu peristiwa alam yang sering terjadi di dunia, termasuk Indonesia, dan terjadi ketika aliran air yang berlebihan menggenangi daratan dalam jangka waktu tertentu. Perubahan iklim, cuaca ekstrem, urbanisasi yang tidak terkendali, dan kondisi geografis yang kompleks telah berkontribusi terhadap peningkatan frekuensi dan intensitas banjir, terutama di daerah perkotaan. Analisis banjir otomatis dan deteksi citra dapat memberikan panduan dan informasi yang berguna dalam membuat keputusan untuk mengurangi dampak destruktif seperti korban jiwa dan ekonomi, salah satunya dengan melakukan segmentasi untuk membantu proses pembuatan peta kerawanan banjir. Namun, sejumlah kecil data beresolusi tinggi dan berlabel yang tersedia membuat proses segmentasi sulit untuk dilakukan. Oleh karena itu, penulis mengusulkan pendekatan semi-supervised yaitu mean teacher dengan memanfaatkan teknik deep learning. Adapun dataset yang digunakan adalah citra SAR Sentinel-1 C-band yang telah diolah sebelumnya. Hasil penelitian menunjukkan bahwa model usulan memberikan kenaikan performa yang cukup signifikan pada metrik IoU sebesar 5% terhadap baseline yang mengimplementasikan teknik pseudo-labeling. ......Floods are one of the natural disaster events that occur in the world. Floods happen when excessive water flows and submerges land for a certain period of time. Climate change, extreme weather, uncontrolled urbanization, and complex geographical conditions have contributed to the increase in the frequency and intensity of floods, especially in urban areas. Automatic flood analysis and detection of imagery can provide useful guidance and information in making decisions to reduce destructive impacts such as loss of life and economy. However, the small amount of high-resolution and labeled data available makes the segmentation process difficult for flood detection. Therefore, the author proposes a semi-supervised approach, namely mean teacher by utilizing the deep learning architecture. The dataset used is the SAR image of Sentinel-1 C-band which has been processed. The results show that the proposed model provides a significant increase in performance on the IoU metric by 5% against the baseline that implements the pseudo-labeling technique.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Raden Arfanto Chalawathal Iman
Abstrak :
Dalam perkembangan teknologi saat ini, kemampuan mesin untuk dapat belajar memiliki peranan yang sangat penting. Berbagai upaya telah dilakukan untuk mengembangkan kecerdasan buatan terhadap mesin sehingga mesin dapat melakukan pembelajaran. Salah satu macam pembelajaran mesin (machine learning) adalah dengan Brain Emotional Learning (BEL). BEL merupakan metode pembelajaran mesin yang terinspirasi dari fungsi kerja sistem limbik mamalia yang memiliki kemampuan untuk menyimpan memori, membuat keputusan dan memberi respon emosi. Dalam penerapannya, BEL telah terbukti dapat menyelesaikan berbagai masalah pembelajaran, seperti dalam masalah klasisfikasi, masalah prediksi, dan pengendalian. Pada skripsi ini, akan dilakukan perancangan dengan BEL untuk dapat mengkategorikan data melalui metode pembelajaran supervised learning dan diuji dengan data iris. Hasil pengujian menunjukkan bahwa BEL dapat digunakan untuk klasifikasi beberapa macam kelas, terdapat hubungan yang tidak linear dari faktor-faktor yang mempengaruhi proses pembelajaran terhadap hasil, konstanta β dan konstanta γ memberikan hasil akurasi rendah ketika keduanya bernilai besar, dan hasil akurasi terbaik sebesar 93,33% untuk jenis data iris. Selain itu, perbandingan dengan paper rujukan menunjukkan bahwa hasil rancangan memberikan hasil yang lebih baik daripada algoritma GDBP MLP pada epoch rendah meskipun hasil rancangan belum sebaik rujukan.
In todays technological development, the ability of machines to be able to learn has a very important role. Various efforts have been made to develop artificial intelligence on the machine so that the machine can do learning. One type of machine learning is with Brain Emotional Learning (BEL). BEL is a machine learning method inspired by the work function of the limbic system of mammals that has the ability to store memory, make decisions and give emotional responses. In its application, BEL has been proven to be able to solve various learning problems, such as problems in classification, prediction problems, and control. In this thesis, BEL will be designed to be able to categorize data through supervised learning methods and tested with iris data. The test results show that BEL can be used to classify several types of classes, there is a non-linear relationship of the factors that influence the learning process to results, constants and constants give low accuracy results when both are of great value, and the best accuracy results are 93, 33% for iris data types. In addition, the comparison with the reference paper shows that the design results have better results than the MLP GDBP algorithm at the lower epoch even though the design results have not been as good as the references.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariell Zaki Prabaswara Ariza
Abstrak :
Perusahaan XYZ menerapkan Customer Life Cycle atau CLC yang sudah disesuaikan dengan kebutuhan perusahaan demi menjaga loyalitas pengguna. Tak hanya menjaga loyalitas, Perusahaan XYZ menerapkan CLC guna memperluas bisnis yang dijalani olehnya. Dengan bantuan teknologi, CLC dapat dengan mudah untuk dianalisis lebih mendalam. Teknologi yang digunakan berupa pembelajaran mesin. Pembelajaran mesin ini diimplementasikan untuk mendapatkan insight dari data yang dimiliki Perusahaan XYZ. Dalam mendapatkan insight tersebut, digunakan beberapa metode seperti Support Vector Machine, Logistic Regression, Gradient Boosting, Random Forest, Decision Tree, dan FPGrowth. Insight yang didapatkan selanjutnya ditampilkan dalam bentuk visualisasi data yang diaplikasikan ke dalam website. Terdapat tiga permasalahan berbeda yaitu prediksi pembeli potensial, prediksi produk yang akan dibeli, dan prediksi waktu pembelian berikutnya. Permasalahan pertama dapat diselesaikan dengan model Logistic Regression dengan f1-score sebesar 76.35%. Permasalahan kedua diselesaikan dengan model FP-Growth dengan nilai minimum support dan confidence sebesar 0.001. Untuk permasalahan ketiga dapat diselesaikan dengan model Decision Tree dengan nilai akurasi 78.76% dan f1-score sebesar 77.01%. Dilakukan pula pengujian terhadap response time serta SQL query yang digunakan pada setiap endpoint yang bekerja sebagai aktor untuk melakukan distribusi data kepada aplikasi frontend dan aktor untuk melakukan update database. Terakhir, dilakukan pula pengujian terhadap visualisasi data. Pengujian terhadap visualisasi data dilakukan secara kualitatif. Pengujian ini dilakukan dengan menerapkan beberapa tipe visualisasi data untuk tiap business question yang ada. Setelah itu, dilakukan perbandingan pada tiap tipe visualisasi data sehingga mendapatkan visualisasi data yang tepat untuk tiap business question yang ada. ......XYZ Company implements customized Customer Life Cycle or CLC that fits with company’s needs in order to maintain user loyalty. Not only maintaining user loyalty, XYZ Company implements CLC in order to expand its business. With the help of technology, CLC can be easily analyzed with more depth. Technology that is being used within this research is machine learning. Machine learning is implemented to gain insights from data owned by Company XYZ. While obtaining insights, machine learning use several various methods such as Support Vector Machine, Logistic Regression, Gradient Boosting, Random Forests, and Decision Trees. The insights obtained from machine learning are displayed in the form of data visualization that is applied to website. Examination on the machine learning model was formed with different data balancing techniques. Examination using Undersampling balancing technique along with Decision Tree model gives the highest f1-score value at 88.70%. Examination were also conducted on the response time and SQL queries were also carried out for each endpoint that works as an actor to distribute data to frontend applications and actors to update the database. Finally, examination and comparison is conducted on data visualization using qualitative approach. Moreover, this examination is conducted by applying several types of data visualization for each existing business questions. At the end, comparisons were made for each type of data visualization to get the optimum visualization regarding each business question.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alya Nadifa Putri
Abstrak :
Exchange Traded Funds (ETF) adalah salah satu produk investasi pasar modal yang berupa reksa dana dan diperjualbelikan secara real time layaknya saham. ETF dapat menjadi pilihan investasi yang cocok untuk investor pemula karena lebih terdiversifikasi daripada saham. Meskipun demikian, investor tetap harus menyesuaikan profil risiko masing-masing karena semua produk investasi pasti memiliki risiko yang harus dihadapi. Oleh karena itu, sebelum membeli produk investasi perlu dilakukan analisis terlebih dahulu. Dalam penelitian ini dilakukan analisis menggunakan indikator teknikal untuk mengklasifikasi ETF menggunakan metode Support Vector Machines (SVM). Data ETF yang digunakan adalah data historis mingguan 25 ETF yang terdaftar di Bursa Efek Indonesia sejak 9 Maret 2020 hingga 6 Maret 2022. Indikator teknikal yang digunakan adalah moving average, support and resistance, Bollinger bands, dan directional indicator. Hasil dari perhitungan analisis indikator teknikal tersebut selanjutnya digunakan sebagai data input atau fitur dalam proses klasifikasi SVM. Proses klasifikasi bertujuan untuk mengklasifikasikan ETF yang berpotensi menghasilkan return ≥ 1 (return positif) atau < 1 (return negatif) di minggu selanjutnya dengan model SVM terbaik. Model SVM terbaik ditentukan berdasarkan nilai akurasi tertinggi. Pada penelitian ini, model SVM terbaik menghasilkan akurasi sebesar 77% dengan kernel polinomial dan proporsi data training sebanyak 80%. Terdapat 14 ETF yang diprediksi menghasilkan kelas positif oleh model SVM terbaik dan selanjutnya dilakukan pembentukan portofolio menggunakan metode Risk Parity (RP), Minimum Variance (MinV), dan Equal-Weight (EW). Ketiga metode pembentukan portofolio tersebut dibandingkan performanya untuk memilih portofolio terbaik berdasarkan nilai rasio Sharpe tertinggi. Hasil dari penelitian ini, metode MinV menghasilkan rasio Sharpe tertinggi dibandingkan dua metode lainnya. ......Exchange-Traded Funds (ETF) is one of the Capital Market investment products in the form of mutual funds and being traded real-time like stocks. ETFs can be suitable for new investors because they are more diversified than stocks. Nonetheless, the risk profile of each investor must be suited since all investment products have risks that must be faced. Therefore, an analysis must be done before buying the investment products. In this study, an analysis was conducted using 4 technical indicators, such as, moving averages, support and resistance, Bollinger bands, and directional indicators. They were used to classify ETFs using the Support Vector Machines (SVM) method. The data used in this study consisted of weekly historical data of 25 ETFs listed on Indonesia Stock Exchange from March 9, 2020, to March 6, 2022. The result of the technical analysis calculation then be used as features in the SVM classification process. The classification process aims to classify ETFs that have the potential to generate returns of ≥ 1 (positive return) or < 1 (negative return) in the following week using the best SVM model. The best SVM model was determined based on the highest accuracy value. An accuracy of 77% with a polynomial kernel was achieved from a 80% proportion of training data. The 14 ETFs were predicted to gain a positive return using SVM for then a portfolio formed using the Risk Parity (RP), Minimum Variance (MinV) and Equal-Weight (EW) methods. The performances of those portfolio were being compared to choose the best portfolio based on the highest Sharpe Ratio value. The highest Sharpe Ratio portfolio were obtained by SVM-MinV method in this study.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendrico Kristiawan
Abstrak :
Pertanyaan konsultasi pada sebuah forum daring perlu dijawab oleh dokter spesialis yang tepat agar jawaban yang diberikan akurat dan bermanfaat bagi pengguna yang bertanya. Terkait hal tersebut, penelitian ini membahas tentang pengembangan model yang dapat secara otomatis mengarahkan sebuah pertanyaan konsultasi kesehatan ke dokter dengan spesialisasi yang sesuai. Lebih jauh lagi, model yang dibangun merupakan model klasifikasi multi-label karena sebuah pertanyaan dapat terasosiasi dengan lebih dari satu spesialisasi. Penelitian ini dimulai dengan mengevaluasi keefektifan metode pemetaan berbasis aturan dalam memprediksi data yang dianotasi oleh pakar, dan diperoleh hasil yang menunjukkan tingkat keberhasilan yang cukup. Selanjutnya, dikembangkan sebuah model machine learning yang melakukan klasifikasi domain spesialis dokter. Pelatihan model dilakukan dengan berbagai metode, termasuk supervised, unsupervised, serta semi-supervised learning. Model terbaik ditemukan melalui metode domain adaptive pre-training dengan IndoBERT-large sebagai model acuan dan melibatkan unsupervised learning. Selain itu, model supervised learning juga digunakan dengan menggunakan model konvensional, dan hasilnya digunakan untuk analisis kontribusi dari fitur-fitur yang digunakan dalam klasifikasi. Terakhir, penelitian ini mengevaluasi kembali anotasi yang dilakukan oleh manusia dengan menggunakan kata kunci sebagai pendekatan untuk mengurangi kesalahan dalam dataset. Dengan pendekatan ini, berhasil ditemukan beberapa kesalahan anotasi pada dataset yang dianotasi oleh manusia. ...... The consultation questions on an online forum need to be answered by the appropriate specialist doctors to provide accurate and beneficial answers to the users asking the questions. In relation to this, this study discusses the development of a model that can automatically direct a health consultation question to a doctor with the corresponding specialization. Furthermore, the constructed model is a multi-label classification model because a question can be associated with more than one specialization. There are several issues addressed in this work. This research begins by evaluating the effectiveness of rule-based mapping methods in predicting data annotated by experts, and the results show a satisfactory level of success. Furthermore, a multi-label classification model is developed to classify the specialist domains of doctors. The model training is performed using various methods, including supervised learning, unsupervised learning, and semi-supervised learning. The best model is found through domain adaptive pre-training using IndoBERT-large as the reference model and involving unsupervised learning. Additionally, the supervised learning model is also used with a conventional model, and the results are used to analyze the contribution of the features used in the classification. Lastly, this research re-evaluates the annotations made by humans using keyword-based approaches to reduce errors in the dataset. With this approach, several annotation errors were successfully identified in the dataset annotated by humans.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmapuspita
Program Pascasarjana Universitas Indonesia, 2009
T26909
UI - Tesis Open  Universitas Indonesia Library
<<   1 2   >>