"Wilayah konflik membutuhkan sebuah model prediktif yang mendukung pengambilan keputusan kemanusiaan secara cepat dan berbasis data yang adaptif. Penelitian ini mengembangkan kerangka prediksi berbasis Ensemble Machine Learning dan Explainable AI (XAI) untuk mendukung pengambilan keputusan strategis dalam operasikemanusiaan di wilayah tersebut. Model ini diintegrasikan ke dalam siklus Planning for Results (PfR) untuk mendukung perencanaan berbasis risiko. Kerangka kerja mencakup lima tahap: pengumpulan data, pengembangan model, validasi, interpretasi XAI, dan konversi hasil ke rencana operasional.
Model Ensemble menggunakan algoritma Random Forest, Gradient Boosting, XGBoost, dan LightGBM, dengan validasi K-Fold dan Rolling Window. Teknik XAI seperti SHAP, LIME, PDP dan ALE digunakan untuk menginterpretasi fitur penting. Performa yang sangat baik dan tingkat akurasi yang tinggi ditunjukan oleh modelnya sebagai hasil
pengujian : Fatalitas Politik (MAE=0,05, RMSE=0,163, TADDA=0,053), Fatalitas Sipil (MAE=0,002, RMSE=0,016, TADDA=0,001), Demonstrasi (MAE=0,0281, RMSE=0,1207, TADDA=0,026), Monitoring Berita (Akurasi=99%, Recall=100%, F1-Score=98%) dan Insiden Keamanan: (Akurasi=98%, Recall=96%, F1-Score=91%). Data People in Need (PIN) digunakan sebagai acuan untuk penargetan geografis dan prioritisasi zona bantuan. Studi kasus di Afghanistan menunjukkan efektivitas kerangka ini dalam memetakan risiko, menyusun jalur aman untuk pergerakan, dan mendukung intervensi kemanusiaan secara akurat dan transparan.
Conflict areas require a predictive model that supports rapid and adaptive data-driven humanitarian decision-making. This research develops a predictive framework based on Ensemble Machine Learning and Explainable AI (XAI) to support strategic decision-making in humanitarian operations in the region. This model is integrated into the Planning for Results (PfR) cycle to support risk-based planning. The framework includes five stages: data collection, model development, validation, XAI interpretation, and conversion of results into an operational plan.The Ensemble Model uses Random Forest, Gradient Boosting, XGBoost, and LightGBM algorithms, with K-Fold and Rolling Window validation. XAI techniques such as SHAP, LIME, PDP, and ALE are used to interpret important features. The model demonstrated excellent performance and high accuracy levels as a result of the tests: Political Fatalities (MAE=0.05, RMSE=0.163, TADDA=0.053), Civilian Fatalities (MAE=0.002, RMSE=0.016, TADDA=0.001), Demonstrations (MAE=0.0281, RMSE=0.1207, TADDA=0.026), News Monitoring (Accuracy=99%, Recall=100%, F1-Score=98%), and Security Incidents (Accuracy=98%, Recall=96%, F1-Score=91%). People in Need (PIN) data is used as a reference for geographical targeting and prioritization of aid zones. Case studies in Afghanistan demonstrate the effectiveness of this framework in mapping risks, establishing safe routes for movement, and supporting humanitarian interventions accurately and transparently."