Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Ludya Kesturi
Abstrak :
Saham sektor properti dan real estate merupakan jalan bagi investor untuk berinvestasi di pasar properti dan real estate. Harga saham properti dan real esatate memiliki kecenderungan untuk mengalami pergerakkan yang fluktuatif. Untuk meningkatkan potensi perolehan capital gain serta untuk mengukur risiko investasi, harga saham dapat diprediksi menggunakan metode artificial neural network apabila faktor-faktor yang dapat mempengaruhinya diketahui. Variabel yang mempengaruhi harga saham properti dan real estate di Indonesia antara lain, Gross Domestic Product, inflasi, nilai Rupiah terhadap Dollar Amerika, uang beredar, harga minyak mentah, suku bunga jangka panjang, serta volume perdagangan saham. Hasil prediksi dan performa harga saham properti dan real estate Indonesia menggunakan artificial neural network kemudian dibandingkan dengan metode time series konvensional ARIMA dan regresi linier yang menunjukkan hasil berupa metode artificial neural network lebih unggul dibanding ARIMA dan regresi linier. ......Property and real estate stocks facilitates investors to invest their fund in property and real estate market. Property and real estate stock price has a tendency to move fluctuatively. The price can be predicted using artificial neural network, if the variables which affect the price of property and real estate stock could be identified. The variables which affecting the Indonesian poperty and real estate stock price are Gross Domestc Product, inflation, exchange rate of Rupiah to US Dollar, money aggregates, crude oil price, long-term interest rate, and stock trading volume. Predicticon results and the methods' performance then compared with the more conventional methods which are time series analysis ARIMA and linear regression. The result shows that performance of artificial neural network is better than ARIMA and linear regression.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2016
T47045
UI - Tesis Membership  Universitas Indonesia Library
cover
Puteri Kintandani
Abstrak :
Investasi saham merupakan salah satu jenis investasi yang paling populer karena saham memberikan tingkat keuntungan yang tinggi dibandingkan dengan jenis investasi lainnya, tetapi saham juga memiliki tingkat risiko yang tinggi. Fluktuasi harga saham memberikan peluang bagi investor untuk mendapatkan keuntungan yang tinggi. Dibutuhkan sebuah model prediksi harga saham untuk melihat pergerakan harga saham di masa yang akan datang, sehingga investor dapat menentukan waktu yang tepat untuk membeli, menahan, dan menjual saham mereka. Dengan demikian, mereka terlepas dari risiko kerugian dan memperoleh keuntungan yang besar. Terdapat beberapa studi yang membahas tentang prediksi harga saham menggunakan machine learning. Salah satunya yaitu menggunakan Support Vector Regression (SVR). Oleh karena itu, pada skripsi ini akan diuji penerapan SVR menggunakan Particle Swarm Optimization (PSO) sebagai seleksi fitur dalam memprediksi harga saham di Indonesia. Pada skripsi ini digunakan data historis saham harian dari Jakarta Stock Index dan beberapa saham pada sektor real estate dan properti. Beberapa indikator teknikal digunakan sebagai fitur dalam memprediksi harga saham. Studi ini menunjukkan bahwa prediksi harga saham menggunakan SVR dengan PSO sebagai seleksi fitur memiliki kinerja yang baik untuk semua data, fitur, dan jumlah data training yang digunakan pada skripsi ini memiliki nilai error yang kecil. Oleh karena itu, diperoleh model yang akurat untuk memprediksi harga saham di Indonesia. ......Stock investing is one of the most popular types of investments since it provides the highest return among all investment types, although it is associated with considerable risk. Fluctuating stock prices provide an opportunity for investors to make a high profit. A stock price prediction model is needed to see future stock price movements, so investors can decide the right time to buy, hold, and sell their stocks which regardless of the risk of loss and gain a big profit. Several studies have focused on the prediction of stock prices using machine learning. One of them is Support Vector Regression (SVR). Therefore, this study examines the application of SVR using Particle Swarm Optimization (PSO) as feature selection in predicting Indonesian stock price. This thesis used historical daily stock data from Jakarta Stock Index (JKSE) and several real estates and property stock sectors. Some technical indicators are used as a feature in predicting stock price. The study found that stock price prediction using SVR with PSO as feature selection showed good performances for all data, features and the amount of training data used by the study have relatively low error probabilities. Therefore, an accurate model is obtained to predict stock price in Indonesia.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Reza Rahadi
Abstrak :

Meskipun teknologi telah mempengaruhi hampir semua aspek industri finansial, penelitian yang terfokus pada penggunaan teknologi pemrosesan teks dan analisis sentimen dalam konteks prediksi harga saham masih belum banyak dilakukan. Manfaat dan potensi dari penelitian semacam ini memiliki pengaruh yang tinggi, terutama karena analisis sentimen telah menjadi komponen yang penting dalam memprediksi tren pasar saham. Dalam penelitian ini, penulis mengusulkan penerapan metode feature engineering dalam memprediksi harga saham dengan memanfaatkan hasil analisis sentimen menggunakan FinBERT, lalu hasilnya akan dijadikan fitur oleh model BiLSTM. FinBERT adalah model berbasis BERT yang telah dilatih khusus untuk memproses dan menginterpretasi teks keuangan, sementara BiLSTM adalah arsitektur jaringan saraf berulang yang mampu mengatasi masalah yang ada pada jaringan saraf berulang standar seperti vanishing gradient dan efektif dalam mengolah data sekuensial. Penelitian ini menggabungkan kedua teknik ini untuk menciptakan model yang mampu memprediksi pergerakan harga saham berdasarkan analisis sentimen berita keuangan dengan nilai rata-rata MSE yang lebih rendah. Feature engineering digunakan dalam penelitian ini untuk mengekstrak dan mengolah informasi yang relevan dari dataset oleh model FinBERT untuk digunakan pada model BiLSTM. Dengan menggunakan metode feature engineering, ditemukan bahwa model BiLSTM yang menggunakan fitur sentimen analisis memiliki performa tertinggi dengan memiliki rata-rata nilai MSE terkecil dalam memprediksi tujuh saham yang memiliki karakteristik berbeda dengan nilai 3.43, nilai tersebut merupakan rata-rata terkecil dibandingkan tiga model lain dalam penelitian ini seperti LSTM dengan nilai MSE 4.04, Random Forest dengan nilai MSE 9.77, dan SVM dengan nilai MSE 12.56. Selanjutnya, proses optimisasi model BiLSTM menggunakan Optuna ditemukan nilai hyperparameter terbaik dalam menghadapi tujuh jenis saham yang berbeda, sehingga model mampu memprediksi lebih akurat dengan penurunan rata-rata nilai MSE hingga 40.55%. Sebagai bentuk validasi akhir pada penelitian ini telah dilakukan uji fold untuk mendapatkan model yang tidak overfitting dan memiliki rata-rata nilai MSE terkecil dengan variasi nilai hyperparameter batch size. Ditemukan batch size 16 merupakan ukuran paling optimal untuk tipe data NVDA,XOM dan TSLA dengan rata-rata MSE terkecil 0.64, 0.35, 0.05 sedangkan batch size 24 merupakan ukuran paling optimal untuk tipe data saham AAPL, AMZN, GOOG dan GOOGL dengan rata-rata MSE terkecil 0.028, 0.02, 0.03, 0.04, dan 0.03. Dalam menggunakan fitur sentimen analisis berhasil membuktikan menurunkan nilai MSE pada masing-masing jenis saham hingga rata-rata penurunan nilai MSE mencapai 33.10% dari semua jenis variasi data saham tanpa menggunakan fitur sentimen. ......Although technology has influenced nearly all aspects of the financial industry, there is still a lack of research focusing on the use of text processing technology and sentiment analysis in the context of stock price prediction. The benefits and potential of such research are significant, especially as sentiment analysis has become a crucial component in predicting stock market trends. In this study, the authors propose the application of feature engineering to predict stock prices by utilizing sentiment analysis results using FinBERT, which are then used as features by the BiLSTM model. FinBERT is a BERT-based model specifically trained to process and interpret financial text, while BiLSTM is a recurrent neural network architecture capable of overcoming problems inherent in standard recurrent neural networks, such as the vanishing gradient, and is effective in processing sequential data. This study combines these two techniques to create a model capable of predicting stock price movements based on sentiment analysis of financial news with a lower average MSE value. Feature engineering is used in this study to extract and process relevant information from the dataset by the FinBERT model to be used in the BiLSTM model. By using feature engineering, it was found that the BiLSTM model using sentiment analysis features has the highest performance, having the lowest average MSE value in predicting seven stocks with different characteristics, with a value of 3.43, which is the smallest average compared to the three other models in this study, such as LSTM with an MSE value of 4.04, Random Forest with an MSE value of 9.77, and SVM with an MSE value of 12.56. Furthermore, the optimization process of the BiLSTM model using Optuna found the best hyperparameters in dealing with seven different types of stocks, enabling the model to predict more accurately with an average reduction in MSE value up to 40.55%. As a final form of validation in this study, a fold test was conducted to obtain a model that is not overfitting and has the smallest average MSE value with variations in hyperparameter batch size values. It was found that a batch size of 16 is the most optimal size for NVDA, XOM, and TSLA data types with the smallest average MSE of 0.64, 0.35, 0.05, while a batch size of 24 is the most optimal size for AAPL, AMZN, GOOG, and GOOGL stock data types with the smallest average MSE of 0.028, 0.02, 0.03, 0.04, and 0.03. Using sentiment analysis features proved to reduce the MSE value for each type of stock to an average reduction in MSE value reaching 33.10% from all types of stock data variations without using sentiment features

Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanandi Rahmad Syahputra
Abstrak :
Memprediksi pergerakan harga saham merupakan tugas yang sangat menantang karena karakteristik pasar saham yang kompleks, tidak linier, dan penuh ketidakpastian. Namun berdasarkan pada teori efficient market hypothesis dan tingkat efisiensinya, memprediksi pergerakan harga saham merupakan tugas yang masih memungkinkan untuk dicapai. Banyak pendekatan telah diterapkan untuk memprediksi pergerakan harga saham mulai dari pendekatan statistik linier sederhana seperti discriminant analysis (DA) hingga pendekatan machine learning yang kompleks seperti support vector machine (SVM). Baik DA dan SVM adalah pendekatan yang dapat digunakan untuk melakukan klasifikasi seperti memprediksi tren harga saham dari beberapa kelas. Dalam penelitian ini, tren pergerakan harga saham diklasifikasikan ke dalam dua kelas, yaitu "highly possible to go up" dan "highly possible to go down or be neutral" di mana pemisahan kelasnya didasarkan pada variabel berupa data teknikal, fundamental, keuangan, dan koefisien beta dari saham di Bursa Efek Indonesia (BEI). Dengan menggunakan variabel-variabel ini, sejumlah model prediksi dengan periode prediksi atau fungsi tertentu dilatih dan kemudian digunakan untuk memprediksi tren pergerakan harga saham di BEI. Periode prediksi yang digunakan dalam penelitian ini berkisar dari 1 bulan hingga 9 bulan. Metode stepwise linear regression (SLR) dan sequential forward selection (SFS) diterapkan sebagai metode feature selection guna memilih variabel yang paling relevan sehingga kinerja setiap model prediksi dapat dioptimalkan. Pada penelitian ini, jumlah fitur, nilai signifikansi maksimum dari F-to-enter, fungsi kernel, dan metode parameter selection divariasikan sehingga dihasilkan 12 model prediksi DA dan 30 model prediksi SVM. Dengan menerapkan beberapa proses evaluasi, maka model prediksi dengan tingkat akurasi dan efektifitas yang paling baik dapat dipilih. Dari seluruh 12 model prediksi DA yang dirancang, terdapat 3 model prediksi yang dinilai layak untuk diterapkan. Sedangkan dari seluruh 30 model prediksi SVM yang dirancang, terdapat 11 model prediksi yang dinilai layak untuk diterapkan. Kemudian dari 14 model prediksi yang dinilai layak tersebut, 4 model prediksi terbaik untuk periode prediksi 3, 5, 7, dan 9 bulan serta 1 model prediksi terbaik dengan fungsi untuk mengklasifikasi major trend selama 9 bulan telah berhasil dipilih. Kelima model tersebut merupakan model prediksi SVM sehingga dapat disimpulkan bahwa SVM mengungguli DA dalam memprediksi tren pergerakan harga saham di Bursa Efek Indonesia. ......Predicting the movement of stock prices is a very challenging task because the characteristics of the stock market are complex, non-linear, and full of uncertainty. However, based on the efficient market hypothesis theory and its level of efficiency, predicting stock price movements is a task that is still possible to achieve. Many approaches have been applied for predicting the movement of stock prices ranging from simple linear statistical approaches such as discriminant analysis (DA) to complex machine learning approaches such as support vector machines (SVM). Both DA and SVM are approaches that can be used to perform classifications such as predicting stock price trends from several classes. In this study, the trends of stock price movements are classified into two classes, namely "highly possible to go up" and "highly possible to go down or be neutral" in which the class separation is based on variables in the form of technical, fundamental, financial, and beta coefficient data of stocks on the Indonesia Stock Exchange (IDX). By using these variables, a number of prediction models with specific prediction periods or functions are trained and then used to predict the trends of stock price movements on the IDX. The prediction periods used in this study range from 1 month to 9 months. The stepwise linear regression (SLR) and sequential forward selection (SFS) methods are applied as the feature selection methods to select the most relevant variables so that the performance of each prediction model can be optimized. In this study, the number of features, the maximum significance value of the F-to-enter, kernel function, and parameter selection method are varied to produce 12 DA prediction models and 30 SVM prediction models. By applying several evaluation processes, the prediction model with the best level of accuracy and effectiveness can be chosen. From all 12 DA prediction models designed, there are 3 prediction models that are considered feasible to be applied. While from all 30 SVM prediction models designed, there are 11 prediction models that are considered feasible to be applied. Then, out of these 14 prediction models that are considered feasible, 4 best prediction models for the prediction periods of 3, 5, 7, and 9 months and 1 best prediction model with the function to classify the major trend for 9 months have been successfully selected. These five prediction models are SVM prediction models so that it can be concluded that SVM outperforms DA in predicting the trends of stock price movements on the Indonesia Stock Exchange.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library