Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15 dokumen yang sesuai dengan query
cover
"This research has the effort to develop catalyst for steam reforming of bio oil. The bio oil is liquid
product that iv produced _from biomass pyrolysis. The reforming of bio oil produces hydrogen gas. The main
challenge in reforming of organic compound especially aromatic, in bio oil as phenol, is carbon formation
at the catalyst surface resulted in uncomplete reaction. The catalyst formulation resulted is expected to have
high resistance to catalyst deactivation because of carbon formation. Beside that, it is expected too to have
high stability and activity, compared to commercial nickel based catalyst. For those purposes, research of
steam reforming of m-cresol in bench scale has been done. m-cresol is one of phenol compounds in bio oil,
that has stable properties, difficult to react and disturb the catalyst activity. The catalyst formulation used is
Ru-Ni/MgO.La;O3.Al2O3 mixture. This research has succeed to develop catalyst of reforming from Ni-Ru
metal combination that having the good stability and activity to reform m-cresol. The best catalyst
composition resulted is 2%Ru-15%Ni. In Ni and Ru catalyst combination, Ni catalyst is the mainly active
component in reforming of oxygenated aromatic compound in bio oil The Ru catalyst function is to increase
Ni metal dispersion on support, by then increasing the catalyst stability.
"
Jurnal Teknologi, Vol. 20 (3) Maret 2006 : 215-220, 2006
JUTE-20-3-Sep2006-215
Artikel Jurnal  Universitas Indonesia Library
cover
Arif Varianto
"Penelitian ini bertujuan untuk memproduksi hidrogen melalui proses steam reforming bio-oil dari tandan kosong kelapa sawit dengan katalis Ni-Ce/La2O3-γAl2O3. Penelitian ini menggunakan variasi rasio cerium terhadap nikel (Ce/Ni) pada katalis, yaitu sebesar 0,25; 0,5; 0,75; dan 1,00. Steam reforming dilakukan dengan fixed bed reactor pada suhu 700oC dengan tekanan atmosferik. Bio-oil yang digunakan merupakan bio-oil aqueous fraction dengan rumus empirik CH1,47O0,27. Senyawa yang paling banyak dikandung dalam bio-oil yang digunakan adalah asam asetat dan fenol. Hasil penelitian menunjukkan bahwa katalis Ni-0,25Ce mampu menghasilkan yield hidrogen tertinggi dan karbon terdeposisi terendah. Yield hidrogen tertinggi yang dicapai katalis Ni-0,25Ce adalah 18,53% pada menit ke-10 sedangkan karbon terdeposisi yang dicapai katalis Ni-0,25Ce adalah sebesar 0,0959 gram. Semakin banyak loading cerium dari suatu katalis akan mengurangi yield hidrogen karena luas permukaan inti aktif semakin berkurang karena dispersi nikel yang rendah.

This research has a purpose to produce hydrogen by steam reforming of bio-oil from empty fruit bunch with Ni-Ce/La2O3- γAl2O3 catalyst. Variation used in this research is cerium to nickel ratio (Ce/Ni) = 0,25; 0,5; 0,75; dan 1,00. Steam reforming is operated in a fixed bed reactor with 700oC temperature and atmospheric condition. Bio-oil used is bio-oil aqueous fraction with CH1,47O0,27 as its empirical formula. Major components contained inside bio-oil aqueous fraction are acetic acid and phenol. The results of this research shows that Ni-0,25Ce catalyst can produce hidghest hydrogen yield until 18.53% in minute 10. Moreover, deposited carbon resulted by Ni-0,25Ce is 0.0959 gram. The more cerium contained in a catalyst can lead to the decreasing of hydrogen production due to the decreasing of specific surface area because of low disperse of nickel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55076
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Marcheila Putri Widayu
"Metanol dianggap sebagai pembawa hidrogen yang menjanjikan karena kemampuannya untuk melepaskan hidrogen. Katalis berbasis tembaga umumnya digunakan memiliki stabilitas termal rendah di atas ambang batas keamanan. Platinum dapat memfasilitasi dispersi nanopartikel tembaga, mencegah aglomerasi, dan memastikan distribusi seragam pada permukaan katalis, meningkatkan aksesibilitas dan reaktivitas situs aktif tembaga. Penelitian ini mengeksplorasi penggunaan katalis bimetal tembaga-platinum sebagai peningkatan stabilitas katalis penyangga Ca(Ce0.5Zr0.5)O3 pada reaksi methanol steam reforming. Penggunaan support perovskite Ca(Ce0.5Zr0.5)O3 memberikan potensi peningkatan laju reaksi pada water-gas shift reaction dalam reaksi methanol steam reforming. Karakterisasi katalis dilakukan dengan menggunakan XRD, XRF, SAA, Spektroskopi Raman, dan TEM. Aktivitas katalitik pada reaksi methanol steam reforming diuji dengan adanya variasi komposisi dan temperatur. Katalis Cu0.75Pt0.25/Ca(Ce0.5Zr0.5)O3 memiliki aktivitas katalitik tertinggi dengan menghasilkan konsentrasi hidrogen sebesar 24,15% dan produksi hidrogen sebesar 0,0069 mol/min/g. Didapatkan temperatur yang optimal dengan aktivitas katalitik yang baik, yaitu temperatur 350ºC.

Methanol is considered a promising hydrogen carrier due to its ability to release hydrogen. Commonly used copper-based catalysts have low thermal stability above the safety threshold. Platinum can facilitate the dispersion of copper nanoparticles, prevent agglomeration, and ensure uniform distribution on the catalyst surface, improving the accessibility and reactivity of copper active sites. This study explores the use of platinumcopper bimetal catalysts as an improvement in the stability of the Ca(Ce0.5Zr0.5)O3 support catalyst in the methanol steam reforming reaction. The use of perovskite support Ca(Ce0.5Zr0.5)O3 provides the potential for increasing the reaction rate in the water-gas shift reaction in the methanol steam reforming reaction. Catalyst characterization was carried out using XRD, XRF, SAA, Raman spectroscopy, and TEM. Catalytic activity in the methanol steam reforming reaction was tested in the presence of composition and temperature variations. Cu0.75Pt0.25/Ca(Ce0.5Zr0.5)O3 catalyst has the highest catalytic activity by producing hydrogen concentration of 24.15% and hydrogen production of 0.0069 mol/min/g. The optimal temperature with a good catalytic activity is 350ºC."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karina Diah Rosa Ekawati
"Dalam langkah transisi energi, gas hidrogen menjadi salah satu senyawa penting yang berpotensi sebagai bahan bakar dan bahan baku proses industri. Kajian tesis ini akan menganalisis konsumsi energi spesifik dari proses steam reforming dan elektrolisis dalam memproduksi gas hidrogen dengan menentukan kemurnian gas hydrogen >90%. Metode yang dilakukan yaitu menyusun model flowsheet dan simulasi proses produksi gas hidrogen menggunakan software simulasi Aspen HYSYS. Untuk melakukan simulasi, variabel yang digunakan pada proses steam reforming yaitu komposisi umpan metana 85,78, 90, 95, dan 100 %mol. Selain itu juga divariasikan laju alir produksi gas hidrogen dengan rentang 3000 - 12000 lb/hr. Untuk laju alir produksi gas hidrogen yang sama, pada proses elektrolisis akan divariasikan komposisi umpan brinewater 10, 15, 20, dan 25 %wt NaCl. Hasil yang diperoleh yaitu proses elektrolisis memiliki konsumsi energi spesifik 0,214-0,256 (106 Btu/lb) dan konsumsi energi spesifik pada steam reforming yaitu 0,084-0,107 (106 Btu/lb). Konsumsi energi spesifik elektrolisis lebih besar karena energi yang dibutuhkan untuk memecah molekul air yang kuat hanya mengandalkan listrik konvensional yang berasal pemerintah. Primary reformer dan electrolyzer adalah alat yang paling banyak mengonsumsi energi. Dari segi ekonomi, dibandingan nilai investasi CAPEX (Capital Expenditure) dan OPEX (Operational Expenditure) untuk masingmasing proses. Untuk produksi gas hidrogen menggunakan teknologi steam reforming nilai CAPEX sebesar USD 215.731.465 dan OPEX USD 1.723.279/tahun dan nilai investasi pada proses elektrolisis sebesar CAPEX USD 127.045.825 dan OPEX USD 180.408.705/tahun.

In the energy transition phase, hydrogen gas has become a key compound with potential as both a fuel and a raw material for industrial processes. This thesis study analyzes the specific energy consumption of the steam reforming and electrolysis processes in producing hydrogen gas, aiming for a hydrogen gas purity of >90%. The method involves developing a flowsheet model and simulating the hydrogen gas production process using Aspen HYSYS simulation software. For the simulation, the variables used in the steam reforming process include methane feed compositions of 85.78, 90, 95, and 100 mol%. Additionally, the hydrogen gas production rates are varied at 3000, 6000, 9000, and 12000 lb/hr. For the same hydrogen gas production rates, the electrolysis process will vary the brine water feed compositions at 10, 15, 20, and 25 wt% NaCl. The results showed that the electrolysis process has a specific energy consumption of 0.214-0.256 (106 Btu/lb) and the steam reforming process has a specific energy consumption of 0.084-0.107 (106 Btu/lb). The specific energy consumption of electrolysis is higher because the energy required to break the strong water molecules relies solely on conventional electricity from the government. The primary reformer and electrolyzer are the most energy-consuming equipment. Economically, the investment for hydrogen gas production using steam reforming technology is CAPEX USD 215,731,465 and OPEX USD 1,723,279 per year and for electrolysis is CAPEX USD 127,045,825 and OPEX USD 180,408,705 per year."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ragil Priyanto
"Sektor hilir migas memberikan kontribusi yang signifikan terhadap emisi CO2, khususnya dari steam methane reforming (SMR), yang menghasilkan 4,33 tCO2e/kbbl minyak mentah yang diolah. Studi ini menyelidiki kelayakan teknis dan ekonomis pemanfaatan CO2 dari tail gas SMR untuk memproduksi metanol. Simulasi proses dilakukan menggunakan Aspen HYSYS v14, memodelkan proses sintesis metanol melalui hidrogenasi CO2 dengan hidrogen (H2) yang bersumber dari Naphtha Reforming Unit. Hasil simulasi menunjukkan yield metanol optimal sebesar 81,16% pada suhu 235°C dan tekanan 50 bar, menghasilkan 70 ton/jam (612 KTA) metanol dengan kemurnian 99,85% berat. Analisis ekonomi menunjukkan IRR sebesar 8,04%, NPV sebesar -26,5 juta USD, dan pay-out time (POT) selama 22 tahun, yang menunjukkan bahwa proyek tersebut belum layak secara ekonomis dalam kondisi saat ini. Analisis sensitivitas menghasilkan bahwa harga jual metanol dan kapasitas produksi merupakan faktor paling penting yang memengaruhi kelayakan proyek. Peningkatan harga metanol atau kapasitas produksi sebesar 20% dapat meningkatkan IRR secara signifikan di atas tingkat ambang batas sebesar 10,83%. Studi ini memberikan wawasan tentang potensi pemanfaatan CO2 untuk produksi metanol, yang berkontribusi pada pengurangan emisi dan diversifikasi produk di kilang. Optimalisasi lebih lanjut terhadap biaya bahan baku dan integrasi dengan produk hilir seperti MTBE dapat meningkatkan kelayakan ekonomi.

The downstream oil and gas sector contributes significantly to CO2 emissions, particularly from steam methane reforming (SMR), which produces 4,33 tCO2e/kbbl of crude oil processed. This study investigates the technical and economic feasibility of utilizing CO2 from SMR tail gas to produce methanol. The process simulation was conducted using Aspen HYSYS v12, modelling the methanol synthesis process through the hydrogenation of CO2 with hydrogen (H2) sourced from the Naphtha Reforming Unit. Results from the simulation indicate an optimal methanol yield of 81,16% at 235°C and 50 bar, producing 70 tons/hour (612 KTA) of methanol with a purity of 99,85% wt. The economic analysis reveals an IRR of 8,04%, an NPV of -26,5 million USD, and a pay-out time (POT) of 22 years, showing that the project is not yet economically feasible under current conditions. Sensitivity analysis highlights that methanol selling price and production capacity are the most critical factors impacting the project's viability, where a 20% increase in methanol price or production capacity could significantly improve IRR above the hurdle rate of 10,83%. This study provides insight into the potential of CO2 utilization for methanol production, contributing to emission reduction and product diversification in refineries. Further optimization of feedstock costs and integration with downstream products like MTBE could enhance economic feasibility."
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fionna Aurell
"Permintaan hidrogen terus meningkat, seiring dengan kebutuhan untuk mengurangi emisi karbon dari sumber energi fosil. Indonesia, memiliki potensi besar dalam pemanfaatan minyak jarak (Ricinus communis) yang kaya akan trigliserida untuk produksi hidrogen. Penelitian ini bertujuan untuk mendapatkam hidrogen melalui proses steam reforming minyak jarak menggunakan katalis Ni/Al₂O₃. Proses steam reforming dilakukan menggunakan reaktor fixed bed dengan reaksi dijalankan pada fasa uap dimana aliran campuran minyak/air kontinyu. Variabel pada penelitian ini ialah suhu reaksi, rasio minyak/air, dan waktu tinggal. Produk gas dianalisis dengan gas analyzer untuk mengukur konsentrasi H₂, komposisi cair dianalisis dengan GC-MS dan karakterisasi katalis juga dilakukan menggunakan metode Brunauer-Emmett-Teller (BET) dan X-Ray Fluorescence (XRF). Hasil penelitian yang menggunakan umpan minyak jarak sebanyak 50 mL dan air sebanyak 150 mL menunjukkan kondisi terbaik diperoleh pada suhu reaksi 600℃, rasio minyak/air sebesar 1:3 (mL/mL), dan waktu tinggal selama 7 detik. Pada kondisi ini, proses steam reforming selama 15 menit proses reaksi menghasilkan jumlah hidrogen sebesar 6.838.313 ppm atau 146,03 mL.

The demand for hydrogen continues to increase, in line with the need to reduce carbon emissions from fossil energy sources. Indonesia holds significant potential in utilizing castor oil (Ricinus communis), which is rich in triglycerides, for hydrogen production. This study aims to obtain hydrogen through the steam reforming of castor oil using a Ni/Al₂O₃ catalyst. The steam reforming process was conducted in a fixed-bed reactor, where the reaction occurred in the vapor phase with a continuous oil/water feed. The variables investigated in this study were reaction temperature, oil-to-water ratio, and residence time. The gas products were analyzed using a gas analyzer to measure H₂ concentration, the liquid composition was analyzed using GC-MS, and catalyst characterization was carried out using the Brunauer-Emmett-Teller (BET) and X-Ray Fluorescence (XRF) methods. Using 50 mL of castor oil and 150 mL of water as feed, the best operating condition was found at a reaction temperature of 600°C, an oil-to-water ratio of 1:3 (mL/mL), and a residence time of 7 seconds. Under these conditions, the steam reforming process for 15 minutes produced 6,838,313 ppm or 146.03 mL of hydrogen gas."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrie Hariyanto
"Makalah ini membahas tentang pemodelan dan simulasi reaktor unggun tetap (fixed bed reacror) heterogen nonisotemlal nonadiabatik dua dimensi pada keadaan tunak (steady srare). Model heterogen ini membedakan kedua fasa yang terlibat yaitu fasa gas dan fasa padatan, untuk masing-masing pada skala reaktor dai! skala partikel katalis. Pola aliran fasa gas di skala reaktor dimodelkan dengan menggunakan konsep dispersi aksial dan radial. Untuk skala partikel diperhitungkan faletor difusi dengan menggunakan pendekatan difusi efektif, dimana bersama-sama dengan suku reaksi membentuk model untuk skala partikel katalis. Reaksi yang dipilih sebagai contoh reaksi adalah reaksi reformasi kukus (steam rdorming) dengan kinetika yang dikembangkan oleh Froment dan Xu. Data- data hasil pengembangan Froment dan Xu tersebut digunakan sebagai data validasi model.
Penyelesaian skala realctor untuk arah aksial dan radial dilakukan masing-masing dengan menggunakan metode kolokasi ortogonal delapan titik seperti yang dikembangkan oleh Finlayson. Persamaan aljabar dalam bentuk matriks yang diperoleh kemudian diselesaikan dengan menggunakan metode Newton-Raphson. Unruk skala partikel katalis juga digunakan metode kolokasi ortogonal delapan titik untuk geometri sferis. Persamaan-persamaan skala reaktor dan skala partikel tersebut diselesaikan secara serentak (simultan) sampai tingkat konvergensi yang diinginkan.
Dari hasil simulasi, reaktor unggun tetap dengan kinetika Froment dan Xu dapat dimodelkan dengan baik melalui model heterogen dua dimensi tersebut. Hasil yang didapatkan berupa profil konsentrasi dan temperatur di skala partikel dan skala reakton Variasi berbagai parameter dilakukan untuk mengetahui perilaku model tersebut pada berbagai kondisi.
Hasil simulasi menunjukkan bahwa baik konversi CH4 maupun H20 meningkat dengan naiknya temperatur umpan sedangkan peningkatan tekanan umpan menyebabkan konversi keduanya menurun. Hasil simulasi juga menunjukkan bahwa meningkatnya rasio umpan H2O/CH4 menyebabkan konversi CH4 meningkat sedangkan konversi H20 menurun."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49168
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanda Risma Iwana
"

Industri pupuk dapat menjadi salah satu sektor strategis yang dapat memacu perekonomian Indonesia dikarenakan industri pupuk memegang peranan penting dalam mendorong peningkatan produksi pada sektor pertanian yang meningkat seiring dengan bertambahnya populasi di Indonesia. Oleh karena itu untuk memenuhi kapasitas produksi yang terus meningkat, PT. Pupuk Kujang menggunakan katalis nikel oksida dengan alumina yang berfungsi sebagai penyangga pada proses steam reforming. Namun dengan harga logam berharga yang terus meningkat, perlu adanya proses perolehan kembali logam berharga,  yaitu nikel, yang efektif sebagai upaya menurunkan biaya produksi dan mencegah pencemaran lingkungan yang disebabkan oleh limbah spent catalyst. Dalam penelitian ini, dilakukan upaya perolehan logam nikel pada limbah spent catalyst NiO/Al2O3 menggunakan asam asetat sebagai 3 M + 1% H2O2, rasio S/L 20 g/L, dengan temperatur 80 oC dalam waktu 120 menit, dan kecepatan agitasi sebesar 500 rpm berhasil mendapatkan efisiensi recovery logam nikel sebesar 74,63%. Studi kinetika yang dilakukan menggunakan Shrinking Core Model (SCM) menunjukan bahwa prosesnya dikendalikan oleh mekanisme reaksi kimia permukaan dengan energi aktivasi sebesar 23,28 kcal/mol. Kemudian dilanjutkan dengan ekstraksi pada Pregnant Leached Solution (PLS) menggunakan LIX 84-ICNS dengan konsentrasi 40% v/v selama 120 menit pada pH fase akutik 6 dengan kecepatan 500 rpm diperoleh efisiensi ekstraksi nikel sebesar 99,56%.


The fertilizer industry can be one of the strategic sectors that can spur the Indonesian economy because the fertilizer industry plays an important role in encouraging increased production in the agricultural sector which increases along with the increasing population in Indonesia. Therefore, to meet the ever-increasing production capacity, PT. Pupuk Kujang uses a nickel oxide catalyst with alumina which functions as a buffer in the steam reforming process. However, with the price of precious metals continuing to increase, it is necessary to have an effective process for recovering precious metals, namely nickel, as an effort to reduce production costs and prevent environmental pollution caused by spent catalyst waste. In this research, efforts were made to recover nickel metal from spent catalyst NiO/Al2O3 waste using acetic acid as 3 M + 1% H2O2, S/L ratio of 20 g/L, with a temperature of 80 oC in 120 minutes, and an agitation speed of 500 rpm managed to get a nickel metal recovery efficiency of 74.63%. Kinetic studies conducted using the Shrinking Core Model (SCM) showed that the process was controlled by a surface chemical reaction mechanism with an activation energy of 23.28 kcal/mol. Then proceed with extraction in Pregnant Leached Solution (PLS) using LIX 84-ICNS with a concentration of 40% v/v for 120 minutes at pH aqueous phase 6 at a speed of 500 rpm to obtain a nickel extraction efficiency of 99.56%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahra Annisa Wardhani
"Nikel merupakan logam berharga dengan nilai jual dan pemanfaatan yang tinggi dalam berbagai bidang industri. Kebutuhan nikel diperkirakan terus meningkat setiap tahunnya sehingga berdampak pada ketersediaannya. Limbah katalis steam reforming (NiO/Al2O3) mengandung logam nikel sebesar 6% berat dapat menjadi sumber alternatif nikel yang ekonomis melalui metode leaching menggunakan asam DL-malat sebagai leaching agent dan H2O2 sebagai oxidizing agent. Proses decoking pada suhu 600 °C selama 5 jam dengan laju pemanasan 10 °C/menit dilakukan sebagai pre-treatment limbah katalis untuk menghilangkan kokas dan kotoran lainnya yang mengganggu proses leaching serta oksidasi sulfida logam yang membantu meningkatkan kemudahan pelarutan logam nikel. Senyawa H2O2 ditambahkan untuk mengoksidasi logam nikel menjadi bentuk mudah terlarut sehingga dapat meningkatkan efisiensi leaching. Proses leaching menggunakan asam DL-malat 2,5 M, H2O2 2% v/v, ukuran partikel limbah 150 mesh, rasio S/L 20 g/L pada suhu operasi 90 ? selama 120 menit dengan kecepatan pengadukan 500 rpm memperoleh efisiensi leaching logam nikel sebesar 88,42%. Studi kinetika leaching menunjukkan proses leaching dikendalikan oleh mekanisme reaksi kimia pada permukaan dengan energi aktivasi sebesar 106,24 kJ/mol. Logam nikel yang terlarut dalam larutan leaching akan dipurifikasi melalui ekstraksi cair-cair. Ekstraksi cair-cair menggunakan LIX 84-ICNS 40% v/v, pH fasa akuatik 7, rasio O/A 1/1 pada suhu operasi 28 ? selama 60 menit dengan kecepatan pengadukan 500 rpm mampu mengekstraksi nikel sebesar 88,74%.

Nickel is a valuable metal with high selling value and utilization in various industrial fields. Nickel demand is expected to keep rising every year, which impacts its availability. Steam reforming spent catalyst (NiO/Al2O3) containing 6 wt.% nickel can be an economical alternative source of nickel through leaching method using DL-malic acid as a leaching agent and H2O2 as an oxidizing agent. Decoking process at 600°C for 5 hours with a heating rate of 10°C/min was carried out as a pre-treatment of spent catalyst to remove coke and other impurities that interfere with the leaching process and oxidize metal sulfides that help increase the ease of nickel dissolution. H2O2 is added to oxidize nickel into a soluble form that can increase the leaching efficiency. Leaching process using 2.5 M DL-malic acid, 2% v/v H2O2, 150 mesh waste particle size, solid/liquid ratio 20 g/L at an operating temperature of 90 ? for 120 minutes with a stirring speed of 500 rpm obtained 88.42% nickel leaching efficiency. The leaching kinetics study showed that the leaching process was controlled by a chemical reaction mechanism on the surface with an activation energy of 106.24 kJ/mol. The nickel dissolved in the leaching solution will be purified through liquid-liquid extraction. Liquid-liquid extraction using LIX 84-ICNS 40% v/v, aquatic phase pH 7, organic/aquatic ratio 1/1 at an operating temperature of 28 ? for 60 minutes with a stirring speed of 500 rpm was able to extract 88.74% nickel."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khansa Rifa Ramadhani
"Nikel merupakan logam yang banyak dimanfaatkan untuk keperluan industri, seperti pada katalis proses kimia. Kebutuhan atas nikel diperkirakan terus meningkat setiap tahunnya. Untuk dapat memenuhi kebutuhan nikel, perolehan kembali logam nikel dari sumber sekunder, seperti limbah katalis dapat menjadi alternatif yang ekonomis. Limbah katalis yang mengandung logam nikel sebesar 15% berat dapat diperoleh dari proses steam reforming. Perolehan kembali logam nikel dari limbah katalis dilakukan dengan metode leaching menggunakan asam laktat sebagai leaching agent yang minim emisi gas dan H2O2 sebagai oxidizing agent. Penambahan H2O2 bertujuan meningkatkan efisiensi leaching dengan mengoksidasi logam yang terkandung di dalam limbah katalis menjadi bentuk yang lebih larut. Penelitian ini yang menggunakan 1,5 M asam laktat dan 2% volume H2O2 pada suhu operasi 80℃ selama 240 menit berhasil mencapai efisiensi leaching logam nikel sebesar 72,25%. Studi kinetika yang dilakukan pada proses leaching tersebut menunjukkan bahwa prosesnya dikendalikan oleh mekanisme difusi dengan energi aktivasi sebesar 13,56 kJ/mol. Logam nikel yang terlarutkan ke dalam larutan leaching kemudian dipurifikasi melalui ekstraksi cair-cair dengan bantuan ekstraktan Cyanex 272 untuk memisahkannya dari logam lain yang terikut dalam larutan leaching. Dengan konsentrasi Cyanex 272 sebesar 1 M pada pH fase akuatik 8 selama 60 menit, diperoleh efisiensi ekstraksi sebesar 79,57%.

Nickel is a metal that is utilized in several industries for catalyst. The demand of nickel is predicted to keep rising every year. To meet the demand, recovering nickel from secondary source, such as spent catalyst waste can be a solution. Spent catalysts containing 15%wt nickel can be obtained from steam reforming process. The recovery of nickel is done by leaching method using lactic acid as leaching agent with minimum gas emission and H2O2 as an oxidizing agent. Addition of H2O2 is expected to increase the leaching efficiency by oxidizing the nickel into a more soluble form. This research that used 1,5 M lactic acid and 2%v/v H2O2 at 80℃ for 240 minutes managed to attain 72,25% leaching efficiency. Kinetic study conducted in this leaching process showed diffusion as limiting mechanism with 13,56 kJ/mol energy activation. Dissolved nickel metal in the leach liquor is then purified through solvent extraction with the help of Cyanex 272 extractant to be separated from other undesirable metal. Under the operation condition 1 M Cyanex 272 and pH aquatic phase 8, 60 minutes extraction process resulted in 79,57% nickel extraction efficiency"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>