Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Lukas Hansel Briliano
"Distribusi Burr Tipe XII atau yang biasa dikenal dengan distribusi Burr merupakan salah satu dari dua belas tipe distribusi kontinu dalam sistem Burr. Distribusi Burr mempunyai karakteristik menceng kanan dan mempunyai tail yang tebal. Distribusi Burr dapat diterapkan dalam berbagai masalah survival. Untuk mempelajari lebih lanjut, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi Burr pada data tersensor kanan dengan metode Bayes. Prosedur penaksiran adalah dengan menentukan distribusi prior yang digunakan, yaitu conjugate prior, pembentukan fungsi likelihood untuk data tersensor kanan dan pembentukan distribusi posterior. Penaksir Bayes didapatkan dengan cara meminimumkan fungsi risiko posterior berdasarkan fungsi loss. Fungsi loss yang digunakan adalah Square Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Setelah didapatkan penaksir Bayes, dilakukan simulasi data untuk membandingkan keefektifan taksiran parameter dari kedua fungsi loss menurut Mean Square Error (MSE). Yang dimaksud penaksir yang efektif adalah penaksir yang mempunyai MSE lebih kecil. Selain itu dilihat juga pengaruh intensitas tersensor pada kedua fungsi loss menurut MSE. Berdasarkan hasil simulasi, penaksir Bayes dengan PLF lebih efektif daripada SELF dan semakin besar intensitas tersensor maka MSE yang dihasilkan semakin besar untuk kedua fungsi loss.

Burr Type XII distribution is known as Burr distribution, is one of the twelve types continous distribution on Burr system. Burr distribution is heavy-tailed and right-skewed. Burr distribution has an important role in survival analysis. To learn more, parameter estimation is needed. This study will explain about parameter estimation of Burr distribution for right censored data with Bayes method. Procedure for estimating parameter are, determine which prior distribution to use, that is conjugate prior, likelihood function construction for right censored data and calculation of posterior distribution. Bayes estimator is obtained by minimize posterior risk function based on loss function. This study will use Square Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation will be done to compare the effectiveness of Bayes estimator with both loss function according to Mean Square Error (MSE). What is meant by effective estimator is it has smaller MSE. Besides, this study is also explained the effect of the censored intensity according to MSE. Based on simulation results, Bayes estimator with PLF is more effective than SELF and greater censored intensity, greater MSE produced, for both loss function."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifia Fithritama
"Dalam beberapa tahun ini, telah banyak penelitian yang berhubungan dengan pengenalan pola dilakukan dengan menggunakan jaringan syaraf tiruan (artificial neural network). Skripsi ini membahas tentang sistem pengenal pola berbasis neural network ensemble (NNE), yang merupakan kumpulan dari beberapa neural network tunggal. Penelitian ini membandingkan antara NNE yang dilatih dengan fungsi eror kuadratis dan cross-entropy. Terdapat 12 dataset pola yang digunakan pada penelitian ini yaitu 9 dataset pola yang didapatkan dari ?UCI Repository of Machine Learning Database?, 2 dataset citra wajah dari kamera infra merah dan kamera cahaya tampak, dan 1 dataset campuran aroma. Prosedur kerja system terdiri dari tahap pra-pemrosesan, pelatihan, dan pengujian. Pada tahap pelatihan, diterapkan algoritma Negative Correlated Learning (NCL) yang merupakan pengembangan dari algoritma standar backpropagation. Hasil pengujian yang ditinjau dari recognition rate menunjukkan NNE yang dilatih dengan fungsi eror cross-entropy memberikan performa yang lebih baik dibandingkan dengan NNE yang dilatih dengan fungsi eror kuadratis.

In recent years, many people have been working on pattern recognition using artificial neural network. This bachelor thesis discuss about pattern recognition system based on neural network ensemble (NNE), which is a group of some individual neural networks. This research compares between NNE which is trained using mean-of-square and cross-entropy error function. There are 12 datasets used in this experiment, which are 9 pattern datasets obtained from ?UCI Repository of Machine Learning Database? and 2 dataset of frontal face images from infra red and visible-light camera, and 1 dataset of odor mixtures. The working procedures of the system consist of pre-processing, training and testing stages. In the training stage, Negative Correlated Learning (NCL) algorithm, a developed standard back propagation method, is applied and some parameters are varied to obtain the optimum performance. The testing result which is measured from recognition rate shows that NNE which is trained using cross-entropy error function has a better performance than the one with mean-of-square error function."
Lengkap +
2011
S170
UI - Skripsi Open  Universitas Indonesia Library