Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Luthfy Dzikrillah Hanindi Alfaqih Mas`udi
Abstrak :
Di dalam studi ini, kami mengidentifikasi parameter fisiologis yang paling penting dalam menentukan dosis serap (DS) individual organ at risk (OAR) dan tumor di dalam Peptide-receptor radionuclide therapy (PRRT). Oleh karena itu, global sensitivity analysis (GSA) dengan metode Sobol dan model physiologically-based pharmacokinetic (PBPK) digunakan. Model PBPK seluruh-tubuh yang telah dibangun untuk perencanaan pengobatan PRRT untuk pasien-pasien meningioma digunakan. Parameter-parameter fisiologis of interest untuk analisis GSA merupakan parameter yang sebelumnya telah diestimasi dari data biokinetik dan dilaporkan di dalam literature, yaitu densitas reseptor organ Rd, aliran serum organ f, laju degradasi, dan laju pengikatan peptide. GSA dengan metode Sobol dipilih berdasarkan akurasinya untuk studi-studi sensitivitas. Sebuah toolbox GSA berbasis MATLAB yang umum digunakan (https://www.safetoolbox.info/) dan program in-house berbasis software MATLAB  (versi R2018b) digunakan untuk analisis. Metode sampling dengan distribusi log-normal digunakan untuk menghindari nilai-nilai negatif dari parameter-parameter yang disampel. Efek-efek utama Si dan efek-efek total STi dihitung dan dianalisis menggunakan program GSA dan model PBPK untuk identifikasi pentingnya masing-masing parameter model i untuk individualisasi DS di dalam PRRT. Untuk menjamin konvergensi dari nilai Si and STi, berbagai jumlah simulasi model hingga 15000 sampel digunakan. Variabilitas inter-individual DS tumor (koefisien variasi KV mencapai 97.05%) lebih tinggi dibandingkan OAR (mis. Ginjal KV sekitar 31.59%). Densitas reseptor teridentifikasi sebagai parameter yang paling penting yang menentukan DS dari tumor, mis. [RdTU2]: Si = 0.856, STi = 0.951. Hasil yang sama juga ditemukan untuk OAR dimana densitas reseptor memiliki efek utama dan efek total yang paling tinggi  [RdK]: Si = 0.802, STi = 0.963. Kami telah menunjukan implementasi GSA yang pertama kali dengan metode Sobol untuk identifikasi parameter-parameter yang paling penting untuk individualisasi DS di dalam PRRT. Hasil yang kami miliki menyarankan pengukuran yang akurat terhadap densitas-densitas reseptor untuk sebuah penentuan DS tumor dan OAR yang akurat.
In this study, we identified the most important physiologic parameters determining the individual organ at risk and tumor absorbed doses (ADs) in Peptide-receptor radionuclide therapy (PRRT). Therefore, a global sensitivity analysis (GSA) with Sobol method and a physiologically-based pharmacokinetic (PBPK) model were used. A whole-body PBPK model that has been developed for treatment planning in PRRT therapy for meningioma patients was used. The physiologic parameters of interest for the GSA analysis were the parameters that have been previously estimated from the biokinetic data and were reported in the literature, i.e. the organ receptor densities Rd, organ flows f, organ release rates, and peptide binding rate. GSA with Sobol method was chosen based on its accuracy for sensitivity studies. A widely used GSA MATLAB-based toolbox (https://www.safetoolbox.info/) and an in-house program based on MATLAB software (version R2019b) were used for the analysis. The sampling method with a log-normal distribution was used to avoid any negative values of the sampled parameters. The main effects Si and total effects STi were calculated and analyzed using the GSA program and the PBPK model to identify the importance of each model parameter i for the individualization of the ADs in PRRT. To warrant the convergence of the calculated Si and STi, various numbers of model simulations up to 15000 samples were used. The inter-individual variability of tumor ADs (coefficients of variation CV up to 97.05%) was higher than that in the organ at risk (e.g. kidneys CV around 31.59%). Receptor density was identified as the most important parameters determined the ADs of tumors, e.g. [RdTU2]: Si = 0.856, STi = 0.951. The same results was found for the organ at risk where the receptor density had the highest main effect and total effect values, e.g. [RdK]: Si = 0.802, STi = 0.963. We have shown the first implementation of the GSA with the Sobol method to identify the most important parameters for the individualization of the calculated ADs in PRRT. Our results suggested an accurate measurement of the receptor densities for an accurate determination of the tumor and organ at risk ADs.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudhistira Jinawi Agung
Abstrak :
Pendeteksian topik adalah suatu proses untuk mendapatkan pokok bahasan atau topik pada suatu dokumen teks. Pada data yang besar, pendeteksian topik dapat dilakukan dengan lebih efisien menggunakan metode machine learning. Clustering merupakan salah satu metode machine learning yang bertujuan untuk mengelompokkan data yang memiliki karakteristik serupa ke dalam suatu kelompok/cluster. Beberapa contoh metode clustering adalah K-Means, Fuzzy C-Means (FCM), dan Eigenspace-Based Fuzzy C-Means (EFCM). Metode clustering hanya memproses data numerik, oleh sebab itu diperlukan metode representasi teks. Metode representasi teks yang umum digunakan sebelumnya adalah Bag of Words (BoW) dan Term-Frequency Inversed Document Frequency (TFIDF). Namun, metode BoW dan TFIDF kurang baik dalam merepresentasikan teks secara kontekstual. Pada tahun 2018 metode representasi teks yang baru ditemukan yaitu metode Bidirectional Encoder Representation from Transformers (BERT). Model BERT dapat merepresentasikan teks secara kontekstual dan menghasilkan representasi teks berdimensi tinggi. EFCM merupakan teknik clustering yang menggunakan kombinasi teknik reduksi dimensi Truncated Singular Value Decomposition (TSVD) dengan teknik clustering FCM. Pada tahun 2022 terdapat penelitian yang mengombinasikan BERT dan EFCM untuk pendeteksian topik. Pada model kombinasi BERT dan EFCM terdapat beberapa nilai parameter yang dapat diatur, antara lain adalah pemilihan lapisan encoder BERT, dimensi EFCM, dan derajat fuzziness. Penelitian ini berfokus pada analisis sensitivitas parameter untuk melihat pengaruh dari nilai parameter terhadap kinerja model EFCM berbasis BERT untuk pendeteksian topik. Analisis sensitivitas parameter menggunakan metode Sobol untuk menentukan parameter yang tidak sensitif dan yang paling sensitif. Kinerja model dievaluasi menggunakan metrik evaluasi topic coherence, topic diversity, dan topic quality. Hasil penelitian menunjukkan bahwa parameter lapisan encoder, dimensi EFCM, dan derajat fuzziness sensitif terhadap kinerja model. Selain itu, diperoleh model optimal pada tiga dataset menggunakan parameter tuning metode grid search. Penerapan parameter tuning dapat meningkatkan performa model pada ketiga dataset berdasarkan nilai topic quality. ...... Topic detection is a process to get the subject matter or topic in a text document. In large data, topic detection can be done more efficiently using machine learning methods. Clustering is a machine learning method aiming to group data with similar characteristics into a group/cluster. Some examples of clustering methods are K-Means, Fuzzy C-Means (FCM), and Eigenspace-Based Fuzzy C-Means (EFCM). The clustering method only processes numeric data; therefore, a text representation method is needed. Previously used text representation methods were Bag of Words (BoW) and Term-Frequency Inverse Document Frequency (TFIDF). However, the BoW and TFIDF methods are not good at representing text contextually. In 2018 a new text representation method was discovered, namely the Bidirectional Encoder Representation from Transformers (BERT) method. The BERT model can contextually represent text and produce high-dimensional text representations. EFCM is a clustering technique that combines the Truncated Singular Value Decomposition (TSVD) dimension reduction technique with the FCM clustering technique. In 2022 there will be research that combines BERT and EFCM for topic detection. In the BERT and EFCM combination model, there are several parameter values that can be set, including the selection of the BERT encoder layer, EFCM dimensions, and the degree of fuzziness. This study focuses on parameter sensitivity analysis to see the effect of parameter values on the performance of the BERT-based EFCM model for topic detection. Parameter sensitivity analysis uses the Sobol method to determine which parameters are insensitive and the most sensitive. Model performance was evaluated using evaluation metrics of topic coherence, topic diversity, and topic quality. The results showed that the parameters of the encoder layer, EFCM dimensions, and degree of fuzziness were sensitive to model performance. In addition, the optimal model was obtained for three datasets using the grid search method parameter tuning. Parameter tuning can improve the model performance on the three datasets based on topic quality values.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library