Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Michael Wijaya
Abstrak :
Skripsi ini membahas penerapan Convolutional Neural Network dalam merancang Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar. Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar merupakan perkembangan dari Sistem Penilaian Esai Otomatis atau Simple-O yang telah dikembangkan sebelumnya oleh Departemen Teknik Elektro UI. Tujuan dari dikembangkannya Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar ini agar dapat menilai sebuah gambar secara otomatis sehingga dapat mempercepat proses penilaian. Rancangan yang dibuat dalam penelitian ini akan memanfaatkan machine learning untuk memprediksi nilai dari gambar yang diuji. Pembelajaran akan dilakukan dengan menggunakan dataset yang memiliki label mulai dari nilai "1" sampai "10". Untuk mendapatkan informasi fitur dari gambar, digunakan algoritma Convolutional Neural Network dimana Neural network ini termasuk ke dalam algoritma Deep Learning. Pada sistem ini sebagian besar bahasa pemrograman yang digunakan adalah Python.
This thesis discusses the implementation of Convolutional Neural Network in designing an automated essay grading system in which the essay answer is in the form of an image. This automated essay grading system is based on the Department of Electrical Engineering in University of Indonesia's research called Simple-O. The purpose of this automated essay grading system to be developed is that the images can be graded automatically and accordingly so it will make the grading process more efficient. The design made in this proposal will utilize machine learning to predict the grade for the images inputted. The learning process will be done using a labeled data set from grade "1" to "10". Feature extraction process will be done using Convolutional Neural Network, which is considered a deep learning algorithm. This system will be programmed in Python.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Randy Sanjaya
Abstrak :
Pada skripsi ini dikembangkan sistem dengan basis bahasa pemrograman Java untuk menilai esai dalam bahasa Indonesia menggunakan algoritma yang lebih efisien dan optimal. Algoritma ini terdiri dari 4 tahap. Pertama adalah Latent Semantic Analysis (LSA) yang digunakan untuk memperoleh dan menyimpulkan hubungan kontekstual dari arti kata suatu teks. Kedua, Single Value Decomposition SVD untuk memperoleh variasi penyebaran dari hubungan tersebut. SVD mengidentifikasi dimana variasi muncul paling banyak, sehingga memungkinkan untuk mencari pendekatan yang terbaik pada data asli menggunakan dimensi yang lebih kecil. Ketiga, Latent Semantic Indexing LSI yaitu metode pengindeksan dan pengambilan untuk mengidentifikasi pola didalam hubungan antara term dan konsep yang dimiliki didalam koleksi teks yang tidak terstruktur sehingga memperoleh vektor yang merepresentasi teks tersebut. Terakhir, Cosine Similarity Measurement CSM untuk memperoleh nilai kemiripan antara teks dengan dokumen referensi. Untuk mengatasi permasalahan tata bahasa dan kosa kata pada esai, dalam karya ini diajukan teknik koreksi otomatis untuk memeriksa kata dalam pustaka kata untuk penyetaraan kata dengan arti yang serupa ataupun kata yang tidak memiliki arti spesifik. Kemudian, algoritma jarak Jaro-Winkler digunakan untuk memeriksa kesalahan kata yang disebabkan secara tidak sengaja. Dengan jarak Jaro-Winkler, kita dapat menentukan apakah 2 buah kata dapat dikatakan serupa. Hal ini sangat penting saat memeriksa dokumen yang berisi kesalahan penulisan, karena dapat mempengaruhi hasil LSA. Dengan sistem ini, nilai yang diperoleh serupa dengan nilai berdasarkan human-rater. Dengan pustaka kata yang terdiri dari 116 kata sinonim dan 2014 kata tugas, akurasi yang dihasilkan adalah 85.082 13.423.
In this thesis, a Java based system for grading essays in Indonesian language using a more efficient and optimal algorithm is developed. This algorithm consisted of 4 stage. The first stage is Latent Semantic Analysis LSA , which is used to obtain and conclude the contextual relation of words meaning in a text. The second stage uses Single Value Decomposition SVD to obtain scatter variance from the relations. SVD identifies where variances appear at most, therefore is enabled to find the best approach to the original data using reduced dimensions. The third stage is Latent Semantic Indexing LSI which is an indexing and retrieval method to identifies patterns in relation between terms and concepts contained in unstructured text collection and results with a vector representing the text. The last stage is Cosine Similarity Measurement CSM to obtain similarity value from the text and answer document. To resolve problems stemmed from grammar and vocabulary, in this work we propose an auto correction technique to check a word from word library for equalization of word with same or no specific meaning. Then, Jaro Winkler distance algorithm is used to check word errors caused by accident when typing. With the distance, we can determine whether two strings of word are similar. This is extremely important when scanning text with typos, as it will affect the result from LSA. Using this system, the value obtained is similar to the value obtained from human rater. With word library consisting of 116 words for synonym check and 204 function words, the resulting accuracy is 85.082 13.423.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69656
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan Prayuda Putra
Abstrak :
Skripsi ini membahas rancangan dan pengembangan sistem penilaian esai otomatis untuk ujian Bahasa Jepang dengan bentuk isian singkat/esai. Sistem dirancang dengan model hybrid MLP (Multilayer Perceptron) dengan Particle Swarm Optimization. Sistem ditulis dalam bahasa pemrograman Python. Penilaian otomatis dilakukan dengan membandingkan jawaban mahasiswa dan jawaban dosen berdasarkan jarak kemiripan menggunakan Manhattan Distance. Model Hybrid MLP akan digunakan untuk menghasilkan vektor jawaban agar dapat dibandingkan dan dinilai. Dari variasi model yang diuji, variasi yang terbukti memiliki performa terbaik adalah variasi dengan model MLP yang dilatih secara backpropagation dengan optimizer Adam dengan learning rate sebesar 0.000001, fungsi loss categorical-crossentropy, dan dilatih selama 50 epoch. Model mendapatkan tingkat persentase eror sebesar 21.85% untuk rata-rata nilai prediksi dibandingkan dengan nilai yang diberikan oleh dosen. ......This thesis discusses and explore the designs and development of Automatic Essay Grading System using combination of Multilayer Perceptron with Particle Swarm Optimization. The program is being developed with Python programming language. The system compares the matrix vector of the student’s answer with the key answer using Manhattan Distance. Out of all the variations that are tested, the model that is proven to be the most stable is the MLP model that are trained with Backpropagation with loss function crosscategorical-crossentropy and Adam optimizer with learning rate of 0.000001. The model achieves an error percentage of 21.85% for the average grade predicted compared to the actual grade.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurjannah Cintya Adiningsih
Abstrak :
Skripsi ini membahas tentang Sistem penilaian esai Otomatis (SIMPLE-O) untuk ujian Bahasa Jepang dengan Bidirectional LSTM dan Manhattan Distance. Dalam penggunaan Algoritma RNN menggunakan arsitektur Bidirectional LSTM. SIMPLE-O merupakan sistem yang sedang dikembangkan oleh Departemen Teknik Elektro UI yang digunakan untk menilai esai secara otomatis. Sistem berjalan menggunakan model Bidirectional LSTM, diukur dengan Manhattan Distance serta terdapat metric evaluasi yang terdiri dari Accuracy, Recall, Precision, F1-Measure. Dalam pengolahan sistem dilakukan secara otomatis menggunakan tensorflow. Pengujian yang dilakukan pada sistem yang dibangun terdapat 3 pengujian yaitu : pengujian terhadap epoch, optimizer dan word2vec. Untuk epoch dilakukan terhadap 3 epoch yaitu 20, 5 dan 10. Dari masing – masing epoch dijalankan sebanyak 5 kali. Hasil tertinggi yang didapatkan pada epoch ada pada epoch 20 yaitu 99.02%, untuk hasil pengujian optimizer menggunkan SGD atau stochastic gradient descent dan word2vec sebesar 500. ......This thesis discusses the Automatic essay scoring system (SIMPLE-O) for Japanese language exams with Bidirectional LSTM and Manhattan Distance. In the use of the RNN Algorithm, the Bidirectional LSTM architecture is used. SIMPLE-O is a system being developed by the Department of Electrical Engineering UI which is used to automatically assess essays. The system runs using the Bi-LSTM model, measured by Manhattan Distance and there is an evaluation metric consisting of Accuracy, Recall, Precision, F1-Measure. In the system processing is done automatically using tensorflow. Tests carried out on the system built have 3 tests, namely: testing the epoch, optimizer and word2vec. For epoch, it is done for 3 epochs, namely 20, 5 and 10. From each epoch, it is run 5 times. The highest result obtained on epoch is at epoch 20, which is 99.02%, for the optimizer test results using SGD or stochastic gradient descent and word2vec of 500.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library