Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Fajri Rahmadi
Abstrak :
ABSTRAK
Emosi merupakan suatu keadaan psikologis yang dipicu oleh aktivitas sensorik manusia baik secara sadar maupun tidak sadar. Emosi berperan penting dalam kehidupan manusia seperti dalam pengambilan keputusan, dalam mengekspresikan diri, dan lain sebagainya. Emosi dapat dihasilkan menggunakan rangsangan/stimulus tertentu seperti emosi takut dihasilkan menggunakan hal-hal yang menyeramkan seperti gambar pembunuhan, emosi bahagia dapat dipicu menggunakan stimulus gambar-gambar yang menyenangkan seperti gambar pemandangan, emosi sedih dapat dipicu menggunakan musik-musik sendu, menangis, dan hal-hal menyedihkan lainnya, dan emosi jijik dapat dipicu mengunakan stimulus yang menjijikkan seperti kotoran manusia. Beberapa stimulus yang biasa digunakan dalam penelitian adalah gambar, text, audio, atau video. Pada proses penghasilan emosi, terdapat aktivitas elektrik dalam otak manusia yang dapat direkam menggunakan perangkat bernama Elektroensefalografi EEG , rekaman gelombang otak ini juga dapat dilakukan menggunakan perangkat yang bernama neuroheadset. Penelitian ini membahas tentang pengembangan sistem akuisisi data sinyal otak menggunakan neuroheadset dan menghasilkan database yang digunakan untuk analisis emosi. Dalam penelitian ini digunakan stimulus berupa video yang terdiri dari kumpulan gambar. Setiap gambar dalam video telah melalui proses validasi sesuai dengan kelas emosi yang diinginkan. Kelas emosi yang digunakan dalam penelitian ini yaitu bahagia, jijik, sedih, dan takut. Setiap kelas emosi memiliki empat stimulus video. Proses validasi dilakukan oleh lima orang partisipan dan proses pengambilan data sinyal otak dilakukan terhadap empat orang partisipan. Pengambilan data dilakukan menggunakan perangkat neuroheadset dengan vendor Emotiv tipe Epoc. Hasil rekaman sinyal diproses menggunakan Matlab dan menghasilkan database berukuran 16x14x7680, dimana angka 16 merepresentasikan jumlah stimulus video, 14 merepresentasikan sensor Emotiv Epoc yang digunakan, dan 7680 merupakan data sinyal yang diambil selama 60 detik dengan frekuensi sampling 128 Hertz. Tingkat keberhasilan tertinggi untuk emosi bahagia, jijik, sedih, dan takut secara berurut adalah 75 , 62.5 , 62.5 , dan 75 . Tingkat keberhasilan tertinggi ini dicapai untuk variasi channel frekuensi alpha, sensor yang digunakan yaitu F7, F3, F4, dan F8. Teknik klasifikasi yang digunakan adalah feed-forward backpropagation neural network.
ABSTRACT
Emotion is a psychological state that triggered by human sensory activity both consciously and unconsciously. Emotions play an important role in human life such as decision making, self expression, and others. Emotions can be generated using certain stimuli such as feared emotions generated using scary things like murder images, happy emotions can be triggered by stimuli of fun images such as sight images, sad emotions can be triggered using melodic music, crying, and other sad things, and disgusted emotions can be triggered using disgusting stimuli like human feces. Some of the stimuli commonly used in research are using images, text, audio, or video. In the process of earning emotions, there is electrical activity in the human brain that can be recorded and processed to obtain brain signals using a device called Electroencephalography EEG , these brainwave records can also be recorded using a device called neuroheadset. This study discusses the development of data acquisition system of brain signals using neuroheadset and generate database used for emotion analysis. In this study used a video stimulus consisting of a collection of images. Each image in the video has gone through the validation process according to the desired emotion class. Four kind of emotion used in research that are happy, disgusted, sad, and scared. Each emotional class has four video stimuli. Five participants carried out the validation process and the process of retrieving the brain signals data performed on four participants. Data retrieval performed using a neuroheadset device with Emotiv vendor with Epoc type. The recording of the signal is processed using Matlab and generates a 16x14x7680 database, where the number 16 represents the number of video stimuli, 14 represents the Epoc Emotion sensor used, and 7680 is the signal data taken for 60 seconds with 128 Hertz sampling frequency. The highest recognition rate for happy, disgusted, sad, and fearful emotions are 75 , 62.5 , 62.5 , and 75 . The highest success rate achieved for alpha frequency channel variation the sensors used are F7, F3, F4, and F8. The classification technique used is feed forward backpropagation neural network.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kandika Bagaskara
Abstrak :
ABSTRAK
Emosi merupakan hasil dari aktivitas sensorik manusia baik sadar maupun tidak sadar yang dipicu oleh suatu objek atau situasi yang dialami manusia. Dalam dunia medis, emosi sangat berperan dalam kesembuhan pasien, tenaga medis sering kali mempertimbangkan emosi pasien untuk pengambilan keputusan langkah medis yang harus ditempuh. Saat ini, sistem pendeteksi emosi yang banyak digunakan adalah menggunakan raut wajah, namun sistem ini masih kurang bisa membantu tenaga medis dikarenakan ada pasien yang tidak mau atau tidak bisa memperlihatkan emosi mereka baik secara verbal maupun non-verbal. Oleh karena itu dibutuhkan sistem pendeteksi emosi yang tidak bergantung pada ekspresi emosi verbal maupun non-verbal. Penelitian ini membahas tentang perancangan sistem pendeteksi emosi menggunakan sinyal elektroensefalografi (EEG) dengan menggunakan metode ekstraksi fitur Bispectrum Wavelet. Kemudian untuk detailed coefficient akan diekstrak fiturnya menggunakan Relative Wavelet Bispectrum (RWB) dan untuk approximate coefficient akan di filter menggunakan Non-Overlap 3-D Pyramid untuk kemudian dicari mean%. Sistem pendeteksi emosi dengan menggunakan sinyal EEG dipilih karena untuk mendapatkan sinyal EEG tidak bergantung pada ekspresi emosi verbal maupun non-verbal. Dataset EEG yang digunakan didapatkan dari Database for Emotion Analysis using Physiological Signals (DEAP). Hasil mean yang didapatkan dari implementasi sistem yang diajukan pada skripsi ini adalah 76.6250% untuk valence dan 75.8594% untuk arousal. Hasil ini lebih tinggi 3.1050% untuk valence dan 2.4794% untuk arousal dibandingkan dengan hasil yang didapatkan pada paper
ABSTRACT
Emotion is a result of humans conscious or unconscious sensorics activities that is triggered by object or situation that the human experienced. In medical world, emotion can be the key for patient healing process, doctor or medical personnel often use patients emotion to make next healing process movement. Nowadays, facial recognition is the most common emotion detection system; however, this emotion detection system is unreliable because it needs patient to show their emotion in verbal or non-verbal ways. Therefore, other emotion detection system that does not depend on humans verbal or non-verbal expression is needed. In this research, emotion detection system using electroencephalography (EEG) signal with Bispectrum Wavelet for its features extraction is discussed. Relative Wavelet Bispectrum will be used to extract features from detailed coefficient, and the approximate coefficient will be filtered and then it mean% will be calculated. EEG signal-based emotion detection system was chosen because EEG signal does not depend on humans verbal or non-verbal expression. Database for Emotion Analysis using Physiological Signals (DEAP) is used in this research. The mean result of the proposed system was 76.6250% for valence and 75.8594% for arousal. This results was higher by 3.1050% for valence and 2.4794% for arousal from the previous system
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library