Gasifikasi biomassa adalah teknologi mengubah limbah menjadi energi yang telah sukses dan sangat menarik untuk dipelajari. Meskipun telah berjalan dengan efektif masih ada beberapa masalah yang sering terjadi, seperti tar. Untuk pengaplikasian lanjut gas harus cukup bersih dari tar, sebab tar dapat membahayakan system karena dapat merusak peralatan serta merusak mesin pembakaran dalam. Saat ini banyak digunakan metode sekunder untuk mengurangi kadar tar yang terkandung dalam syngas, salah satu tekniknya adalah menggunakan filter biomassa sebagai media untuk menyerap tar. Penelitian ini bertujuan untuk mengetahui medium biomassa dengan variasi ketinggian yang paling tepat untuk digunakan dalam penyerapan tar. Dengan menggunakan analisis simulasi dan eksperimental didapatkan biochar sebagai medium dengan efisiensi penyerapan tar yang paling baik, jika dibandingkan dengan sekam padi dan jerami yaitu sebesar 59% dengan penurunan tekanan yang paling besar yaitu sebesar 67 Pa.
Biomass gasification is an attractive and successful technology that transform waste into energy. Even though it has been performing effectively. Many problem are still occuring, such as tar. For the advanced applications, gas needs to be clean enough and tar should be removed, because tar can harm the system and it can damage equipment and damage internal combustion engines as well. For now, many secondary method used to reduce the tar levels that contained in syngas, such as using biomass filter as a medium to adsorp tar. This study aims to determine the best biomass medium with height varations to use in tar adsorption. Using simulation and experimental analysis, biochar known as a medium with the best tar removal efficiency, if compared with rice husk and rice straw, with 59% removal efficiency and 67 Pa of pressure drop.
Nyamuk adalah vektor utama dari penyakit yang mengancam jiwa manusia seperti demam berdarah, chikungunya, demam kuning dan Zika. Dalam beberapa tahun terakhir terdapat metode pengendalian penyakit yang disebabkan vektor nyamuk selain penyemprotan pestisida, telah dikembangkan metode baru dengan melepaskan nyamuk pembawa bakteri Wolbachia ke lingkungan untuk menginfeksi populasi nyamuk liar sehingga dapat memutus penularan penyakit. Alternaltif lain yaitu dengan menggunakan biolarvasida untuk membunuh nyamuk. Biolarvasida berasal dari bahan - bahan alami yaitu tumbuhan (nabati) atau dengan pemanfaatan bakteri. Pada skripsi ini, dikonstruksi model pertumbuhan nyamuk dengan intervensi Wolbachia dan biolarvasida. Populasi nyamuk dibagi menjadi dua, yaitu populasi nyamuk yang terinfeksi Wolbachia dan populasi nyamuk sehat. Kajian analitik terkait proses non-dimensionalisasi, eksistensi dan kestabilan titik keseimbangan dilakukan terhadap model. Berdasarkan kajian analitis yang dilakukan, diperoleh empat buah titik keseimbangan yang dimiliki oleh model ini. Beberapa simulasi numerik dilakukan untuk mendukung hasil kajian analitik dan memberikan interpretasi secara visual, salah satunya yaitu simulasi autonomous untuk rasio antara laju kematian nyamuk terinfeksi dengan laju kematian nyamuk sehat (delta>1) menginterpretasikan mampu menurunkan jumlah kedua populasi nyamuk dan juga biolarvasida sehingga dapat berpengaruh besar dalam meminimalkan penyebaran penyakit.
Mosquitoes are primary vectors of life-threatening diseases such as dengue fever, chikungunya, yellow fever and Zika. In recent years there are methods of controlling diseases caused by mosquito vectors in addition to spraying pesticides, a new method has been developed by releasing mosquitoes carrying bacteria Wolbachia into the environment to infect wild mosquito populations so as to cut off transmission of disease. Another alternative is to use biolarvicide to kill mosquitoes. Biolarvicide comes from natural ingredients, namely plants (vegetable) or by the use of bacteria. In this thesis, a mosquito growth model is constructed with Wolbachia and biolarvicide intervention. Mosquito population is divided into two, namely infected mosquito population Wolbachia and healthy mosquito population. Analytical studies related to the non-dimensionalization process, the existence and stability of the equilibrium points were carried out on the model. Based on an analytical study that has been carried out, obtained four equilibrium points shown by this model. Some numerical simulations are given to support the results of analytic studies and provide visual interpretation. one of which is autonomous simulation for the ratio between the mortality rate of infected mosquitoes and the mortality rate for healthy mosquitoes (delta>1) interpreted as being able to reduce the number of populations of both mosquitoes and biolarvicides so that it can have a major effect on minimize the spread of disease.