Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Tio Adi Bayu Adjie
Abstrak :
ABSTRACT
Perhitungan kondenser Shel! & fube dengan metode Kern, secare prinsip lidakjauh berbeda dengan melode Iainnya, seperti metode Bell-Delaware, dan Taborek. Namun yang membedakan melode Kem dengan Iainnya adalah langkah-langkah perhitungan dan rumus-mmus yang digunakannya. Permasalahan yang timbui dalam merancang kondenser she!! & tube ini adalah masih digunakannya metode perhitungan secara uji coba ( Ma! & error) sehingga membuluhkan wakiu yang lame sehingga pengujian kelayakan kondenser tersebut jedi jarang dilaksanakan_

Untuk mempercepai dan mempermudah perhiiungan kondenser she!! & tube ini, disusunlah subroutine sehingga masaiah yang ada dapat lera1asi_ Submutlne yang dibuat dari bahasa pascal ini, dlsesualkan dengan l ngkah perhiiungan dengan metode Kem, sohlngga dapet mempermudah pemakai untuk melacak urutan perhiiungen kondenser shelf 8 tube.
1999
S36888
UI - Skripsi Membership  Universitas Indonesia Library
cover
Walfajri Anwar
Abstrak :

ABSTRAK
Penelitian yang akan dibahas pada skripsi ini merupakan hasil pengamatan di lapangan yang berfungsi untuk meneruskan faktor pengotoran pada alat penukar kalor shell and tube.

Pengotoran adalah merupakan endapan yang memberikan tambahan tahanan termal terhadap aliran kalor dari udara panas ke udara dingin di dalam alat penukar kalor. Akibat adanya pengotoran, maka panas (energi yang dipindahkan akan berkurang sehingga terjadi pemborosan energi.

Penentuan besarnya faktor pengotoran dari teori-teori yang ada didalam buku masih sulit. Banyak sekali parameter-parameter yang dibutuhkan sehingga proses penentuannya akan memakan waktu yang lama.

Dengan bantuan teori analisa non-dimensional, akan dicari metode lain yang lebih mudah dan lebih cepat untuk menentukan faktor pengotoran tersebut. Yaitu dengan mendefinisikan sebuah bilangan non-dimensional yang mernpakan hubungan antara parameter-parameter awal yang didapat dari data lapangan (aliran massa dan temperatur). Bilangan tersebut adalah bilangan Fa Kemudian dicari hubungan antara bilangan Fa dan faktor pengotoran yang dihitung dengan teori yang diambil dari buku Process Heat Transfer karangan D. Q. Kern (tahun 1950).

Dengan bantuan label dan grafik didapatkan hubungan antara faktor pengotoran dan bilangan Fa, yang berupa hubungan linear sehingga membentuk suatu persamaan linear.

Melalui persamaan linear ini, kita dapat menirukan besarnya faktor pengotoran alat permlra kalor dengan mengetahui bilangan non-dimensional.
1997
S36619
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suhartoyo Budi Utomo
Abstrak :
Penggunaan energi pada bangunan-bangunan saat ini juga berdampak pada minimnya jumlah energi yang tersedia dan mendorong timbulnya berbagai efek negatif terhadap lingkungan. Oleh karena itu, penerapan konsep green building di Negara-negara maju sudah mulai dikembangkan. Salah satu cara untuk mengoptimalkannya adalah dengan menerapkan konsep Zero Energy Building (ZEB), baik dengan melakukan konservasi maupun konversi energi (salah satu potensi yang dapat dikembangkan adalah PEM Fuel Cell). Dalam mendukung konsep ZEB, maka suplai ethanol untuk PEM Fuel Cell akan diproduksi sendiri melalui sistem destilasi. Salah satu komponen yang vital pada sistem tersebut adalah kondenser. Oleh karena itu, pada penelitian ini akan dirancang kondenser reflux tipe shell and tube dengan kapasitas kalor 2287 W dengan temperatur uap ethanol sebesar 376,2 K pada tekanan 104 kPa. Perbandingan hasil perhitungan dengan simulasi Solidworks Simulation Flow 2009 memiliki selisih 2.2- 11.93 % dan keduanya telah memenuhi syarat untuk terjadi kondensasi, sehingga dapat dicapai desain yang lebih optimal.
The utilize of building energy tend to reduce amount of available energy and make negative effects to the environment. Furthermore, the application of Green Building in the advance countries has been developed. One of way to optimize it is Zero Energy Building (ZEB) concept, both by doing conservation or conversion. (PEM Fuel Cell). In order to support ZEB, ethanol supply for PEM Fuel Cell will be produced itself by destillation system. Condenser is the vital component on that system. Because of that important role, this research try to design reflux condenser shell and tube type with heat capacity 2287 W, temperatur inlet ethanol 376,2 K, at pressure 104 kPa. The verification of simulation with Solidworks Simulation Flow 2009 has a range different about 2.2- 11.93 %. Both of them has fulfill the requirement to make vapor ethanol condensed, so the design will be optimum and efficient.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50758
UI - Skripsi Open  Universitas Indonesia Library
cover
Sofwan Haris
Abstrak :
ABSTRAK
Bahan dasar untuk membuat plastik yaitu ethylene. Sebelum ethylene diolah menjadi bahan baku untuk membuat plastik, ethylene tersebut terlebih dahulu disimpan dalan suatu tangld penampungan. Di dalam tangki penampungan tersebut ethylene mengalami penguapan karena temperatur lingkungan yang cukup panas. Supaya ethylene yang berbentuk uap tidak terbuang seoara percuma dan supaya masih dapat dimanfaatkan lagi untuk diolah menjadi bahan baku untuk membuat plastik, rnaka ethylene yang berbentuk uap tersebut harus diubah menjadi bentuk eair kembali_

Alat yang digunakan untuk mencairkan ethylene yang berbentuk uap menjadi cair di PT. X adalah penukar kalor she!! and lube type BKU. Dengan dapat dicairkan kembali ethylene yang berbentuk uap tersebut, perusahaan X dapat menghemat biaya produksi dengan menekan biaya pembelian bahan baku.

Kalor maksimum dan minimum yang diserap oleh R-22 pada kapasitas kompresor 75% dari data hasil perhitungan adalah sebesar 386,02 kW dan 366 kW. Sedangkan kalor maksimum dan minimum yang diserap oleh R-22 pada kapasitas kompresor 100% dari data hasil perhitungan adalah sebesar 526,91 kW dan 466,26 kW.

Kalor maksimum dan minimum yang dilepas oleh ethylene pada kapasitas lcompresor 75% dari data hasil perhitungan adalah 388,19 kW dan 379,12 kW. Sedangkan kalor maksimum dan minimum yang dilepas ethylene pada kapasitas kompresor 100% dari data hasil perhitungan adalah 546,35 kW dan 483,14 kW, Sedangkan dari data desain pertukarall kalomya adalah sebesar 571 kW.

Efektifitas rata-rata penukar kalor pada kapasitas kompresor 75% dan data hasil perhitungan adalah sebesar 93,67 % dan efektititas rata-rata penukar kalor dari data hasil perhitungan pada kapasitas 100% dari data hasil perhitungan adalah sebesar 91,46 %, sedangkan efektifitas disain penukar kalor sebesar 92,30%.
2000
S37639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhi Ari Utomo
Abstrak :
Dalam beberapa aplikasi teknologi tertentu, terkadang dibutuhkan suatu alat penukar kalor yang dapat digunakan untuk menaikkan temparatur dua jenis fluida dingin sekaligus. Alat penukar kalor yang dipakai untuk rujuan ini disebut sebagai alat penukar kalor dengan dua fluida dingin. Kinerja dan karakteristik alat penukar kalor ini seperti halnya alat penukar kalor dengan satu fluida dingin tergantung kepada jenis susunan aliran dan kondisi oparasinya. Salah satu jenis alat penukar kalor ini adalah alat panukar kalor shell and tube dengan dua fluida dingin jenis cross counter flow-one fluid is mixed and the other is unmixed (jenis aliran silang lawan arah dengan satu fluida campur). Pada skripsi ini akan diselidiki kinerja dan karakteristik alat penukar kalor tersebut untuk berbagai kemungkinan konfigurasi aliran kedua fluida dihgin melalui simulasi numenik. Tujuan dan penelitian ini adalah untuk membandingkan kinerja dan karakteristik berbagai konfigurasi aliran alat penukar kalor tersebut. Selain itu, penelitian ini ditujukan pula untuk membuktikan suatu hipotesa yang menyatakan bahwa salah satu bentuk konfigurasi aliran yaitu konfigurasi aliran dengan setiap laluan kedua fluida dingin saling berselingan akan menghasilkan kinerja yang lebih baik. Artinya, kalor yang dipindahkan atau ditransfer oleh konfigurasi ini lebih banyak dibandingkan dengan yang lainnya. Penelitian ini dilakukan dengan batasan bahwa fluida panas yang digunakan memiliki kapasitas kalor yang lebih besar dibandingkan kapasitas kalor yang dimiliki oleh kedua fluida dingin yang hendak dinaikkan temperaturnya. Dalam hal ini fluida panas bertindak sebagai fluida maksimum dan kedua fluida dingin sebagai fluida minimum. Jenis konfigurasi aliran yang akan diselidiki hanya empat kemungkinan konfigurasi. Dari penelitian diperoleh bahwa konfigurasi aliran dengan setiap laluan kedua fluida dingin saling berselingan memiliki kinerja dan karakteristik yang lebih baik dibandingkan ketiga konfigurasi aliran lain yang diteliti. ......At certain application of technology it is sometime needed the heat exchanger that could be used to rise the temperature of two kind of cold fluids. The heat exchanger that is used for this purpose is called as the heat exchanger with two cold fluids. The performance and characteristics of this heat exchanger depends on the flow arrangement ot work fluids and the operation conditions. One type of this heat exchanger is shell and tube-cross counter flow heat exchanger with one fluid is mixed and the other is unmixed. This thesis would discuss about the performance and characteristics of this heat exchanger for some possibility of flow configurations of both cold fluids. The purpose of this research is to compare the performance and characteristics of those flow configuralion.Besides, this research is proposed to prove the thruth of the hypothesis stating that the flow configuration that make the hot fluid cross succesively each one-pass of both cold fluids has the best performance among them. This discussion is constrained by the condition whore the heat capacity of hot fluid is bigger then the heat capacity of both cold fluids. It means that the hot fluid acts as a maximum fluid and cold fluid acts as a minimum fluid. From this research, it is found that the flow configuration that make the hot fluid cross succesively each one-pass of both cold fluids gives the performance and characteristics that is better than the other flow configurations.
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37205
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Pambudi
Abstrak :
Proses pertukaran panas antara dua Huida yang memiliki temperatur yang berbeda terjadi di banyak aplikasi teknologi. Alat yang berfungsi seperti ini dikenal dengan sebutan heat exchanger; alat ini dapat dijumpai pada Air Conditionong (AC), proses pemanfaatan kembali panas yang terbuang, pembangkit tenaga Iistrik dan dalam proses-proses kimia. Pada Pembangkit Listrik Tenaga Gas dan Uap, heat exchanger digunakan untuk menaikkan suhu dari dua fluida dingin. Heat exchanger yang digunakan untuk tujuan seperti ini dikenal dengan heat exchanger dengan dua fluida dingin. Salah satu jenis dan heat exchanger ini adalah she!! and tube dengan dua fluida dingin dengan jenis aliran silang lawan arah dengan satu fiuida campur (cross-counter How heat exchanger-one fluid mixed and the other is unmixed). Skripsi ini membicarakan tentang penelitian terhadap kinerja dan karakteristik dari alat ini, dengan beberapa kemungkinan dari kontigurasi aliran, variasi laju aliran massa fluida dan variasi suhu fluida panas. Tujuan dari penelitian adalah untuk membandingkan pengaruh dari kemungkinan dan variasi tersebut terhadap kinerja heat exchangen. Hasil yang diperoleh dari penelitian menunjukkan bahwa kinerja dan karakteristik dari alat ini tergantung dari konigurasi aliran fluida kerja dan kondisi operasinya seperti laju alir massa fluida dan temperatur fluida panas.
The process of heat exchange between two fluids that are different temperatures occurs in many applications of technology, the device used to implement this exchange is called a heat exchangert. It may be found in air conditionong, electric power production, waste heat recovery and chemical processing. At electric power production that use gas and vapor for its power, the heat exchanger is used to increase the temperature of two kind of cold fluid. The heat exchanger that is used for this purpose is called the heat exchanger with two cold fluids. One type of this heat exchanger is shell and tube-cross counter flow heat exchanger with one fluid is mixed and the other is unmixed. This thesis would talk about the performance and characteristics of this heat exchanger for some possibility of flow ccnhgurations of both cold fluids and variety mass flow rate of fluids and variety temperature of hot fluids. The purpose of this research is to compare the performance and characteristics of this heat exchanger with flow conhgurations, variety mass flow rate of fluids and variety temperature of hot fluid. The results from this research show that the performance and characteristics of this heat exchanger depends on the flow arrangement of work fluids and the operation conditions such as mass flow rate of fluids and temperature of hot fluid.
Depok: Universitas Indonesia, 2001
S37249
UI - Skripsi Membership  Universitas Indonesia Library
cover
Betarto Fitriaji
Abstrak :
Salah satu peralatan yang menerapkan prinsip-prinsip Perpindahan Kalor yang paling umum digunakan adalah Alat Penukar Kalor. Prinsip keja Alat Penukar Kalor adalah memindahlnagz kalor dari fluida panas ke fluida dingin. Pada beberapa aplikasi khusus di lapangan, dibutuhkan Alat Penukar Kalor yang dapat memanaskan dun fluida dingin sekaligus, dan disebut Alat Penukar Kafor dengan Dua Fluids Dingin. Salah satu bemulmya adalah Alat Penukar Kalor Shell and Tube dengan aliran silang-Iawan arah dengan banyak laluan, dengan satu fluida campur dan yang lainnya tak campur. Kineqa suatu Alat Penukar Kalor adaiah kemampuan memindahkan kaior per saman wakm, atau laju perpindahan kalor (q). Sebagaimana Alat Penukar Kalor biasa, kinerja Alat Penukar Kalor dengan Dua Fluida Dingin ditentukan oleh jenis susunan aliran dan kondisi operasinya. Pada Alat Penukar Kalor dengan Dua Fluida Dingin, ada satu faktor lagi yang menentukan kinerjanya, yaitu konjigurasi aliran anlara kedua fIuida dinginnya. Selain itu, juga diperhitungkan profil kecepatan aliran turbulen dari fluida panas dalam shell Pada beberapa contoh aplikasi, digunakan koryigurasi dimana aliran kedua fluida dingin saling berselingan tiap satuan Ialuan. Skripsi ini bertujuan untuk mengetahui korgfigurasi seperti apa yang memiliki kinerja terbaik dengan melakukan simulasi perhinmgan menggunakan program komputer berbasis bahasa pemrograman Pascal. Dengan menjalankan serangkaian perhimngan dalam suatu program, dapat dibandingkan kinerja Alat Penukar Kalor dengan Dua Fluids Dingin. Di sini disimuiasikan empat jenis konfigurasi aliran fluida dingin, yang memvariasikan jumlah Ialuan fluida dingin sebelum saling berselingan. Hasil skripsi ini, yang dijabarkan dalam bentuk grafik dan tabel memmjukkan bahwa keempat jenis konfigurasi mempunyai kemungkinan untuk menghasilkan kinerja yang terbaik yang ditentukan oleh kondisi masukan, yaitu laju aliran massa dan temperarur masuk dari ketiga fluida kerjanya. ......There are many tools that we use in everyday lives that apply Heat Transfer princnzrles. The most common one is Heal Exchanger. lt works by exchanging heat from hot fluid to cold fluid At some special applications, there are needs to use Heat Exchanger that can heat two coldfluiais simultaneously. It is called Two Cold Fluids Heal Exchanger: One of its types is Shell and Tube Heat Exchanger, multi pass cross-counter flow type, with one fluid mixed and others are unmixed. Heat Exchanger's performarzce is the capability to transfers heat at certain limes, or the heat transfer rate (q). Like the usual Heal Exchanger; its flow type and operational condition determirie the Two Cold Fluids' Heat Exchanger's performaunce. There is another variable that determines its perjformance, which is the flow configuration between the two cold fluids. The involvement of turbulent velocity profiles that works at the hot fluid flow in the shell also gives some in_)7uences. At some applications examples, the configuration where the cold fluids airermate every one pass is being used. This script's purpose is to determine what hind of configuration between two eoldfluials has the best performance. It is conducted by doing mathematical simulation using a special computer program based on Pascal programming ikmguage. By doing the simulation in some various inputs, the comparison of configuration peU"ormance is obtained Here, four kinds offlow configurations between the two cold fluids; which are different in the number of pass before they are alternated are calculated. This script's result, that is shown in graphics and tables, shows that all four configurations has chance to have the best performance that is determined by the inputs, which is the mass flow rate ana' the input temperature of the three working fluids.
Depok: Fakultas Teknik Universitas Indonesia, 2001
S37086
UI - Skripsi Membership  Universitas Indonesia Library
cover
Parsa Mozaffari
Abstrak :
With the growth of utilizing natural gas all over the world, Liquefied Natural Gas (LNG) has been widely used in the modern era due to its advantages of storage and transportation. When LNG is unloaded in import terminal, in the time of need, the process of returning natural gas into its gaseous form is being done in the regasification unit with different technologies in order to process the gas and then distribute it by pipeline networks to the end users. Choosing the appropriate LNG vaporizer which is both cost effective and suitable to conditions of the location and environment is intended to be evaluated. The framework of this paper is studying of some of the different LNG vaporization methods and comparing their features and properties that each of them has. The goal of this paper is in the first step, comparison of technologies which are Open Rack Vaporizer (ORV), Shell and Tube Vaporizer (STV), and Intermediate Fluid Vaporizer (IFV) and defining the suitable vaporizer to do the simulation as the second step as well as evaluating the economical features of the project. While the Shell and Tube Vaporizer has been chosen, the regasification plant using three different heating medium, propane, steam, and 50/50 mixture of water and glycol has been designed. At the end, the economic evaluation has been done with total capital investment of 62 million dollars in the service life of 10 years. The NPV is calculated 11.33 million dollars and the salvage value is calculated to be 5.2 million dollars. Each heating medium is considered to be effective depending on the locations and conditions.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54788
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagus Fadhlurrohman
Abstrak :
Sistem pendingin dan pemanas banyak digunakan khalayak umum. Ini membuat penggunaan energi yang tinggi disertai dengan efek pemanasn global. Solusi dari permasalahan ini ialah menggabungkan kedua sistem tersebut dimana panas hasil pendinginan akan digunakan untuk memanaskan. Salah satunya untuk memanaskan air. Komponen yang berperan penting ialah heat exchanger, dalam penulisan ini dipilih Shell and Tube dikarenakan kapasitas besar dan perawatan yang mudah. Didapatkan dari hasil analisa pada sistem ideal bahwa kapasitas pemanasan paling tinggi ialah ketika temperatur kerja AC 20oC dengan nilai 2,9 kW dengan waktu pemanasan 31 menit 18 detik dan untuk paling rendah pada temperatur kerja AC 25oC dengan nilai 2,8 kW dengan waktu pemanasan 32 menit 30 detik. ......Cooling and heating systems are widely used by public. This makes high energy usage accompanied by a global heating effect. The solution to this problem is to combine the two systems where the heat from the cooling will be used for heating. One of them is to heat water. The component that plays an important role in the heat exchanger. In this paper, Shell and Tube was chosen because of its large capacity and easy maintenance. It is obtained from the analysis on the ideal system that the highest heating capacity is when the AC working temperature is 20oC with a value of 2,9 kW with a heating time of 31 minute 18 seconds and for the lowest in 25oC of AC working temperature with a value of 2,8 kW with a heating time of 32 minute 30 seconds.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library