Ditemukan 1 dokumen yang sesuai dengan query
Ambarita, Donny Perdana
Abstrak :
Integral fraksional Katugampola merupakan integral fraksional yang menggeneralisasi integral fraksional Riemann-Louville dan integral fraksional Hadamard menjadi suatu bentuk baru. Dalam integral fraksional Katugampola tersebut terdapat variabel p yang bernilai riil dan tidak sama dengan -1. Integral fraksional Riemann-Louiville akan diperoleh untuk p=0, dan selain itu, integral fraksional Hadamard dapat diperoleh untuk p->-1. Sifat dari integral fraksional Katugampola, yaitu terbatas pada ruang X c,p dan sifat semigrup juga akan diberikan.
......
Katugampola fractional integral is a fractional integral which generalizes Riemann Louville fractional integral and Hadamard fractional integral to be a new form. In Katugampola fractional integral itself there is a variable p with real value and not equal to 1. Riemann Louville fractional integral can be acquired for p 0, and on the other hand, Hadamard fractional integral can also be acquired for p 1. Condition that Katugampola fractional integral is bounded on X c,p space, and semigroup property are also given.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library