Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Winiati Sidharta
"Penelitian ini ditujukan untuk mengetahui sejauh mana etsa dan gerinda pada permukaan semen gelas ionomer mempengaruhi kekuatan ikatan antara semen gelas ionomer dengan resin komposit. Sampel berupa lempeng semen gelas ionomer sebanyak 40 yang dibagi menjadi 4 kelompok, setiap kelompok terdiri dari 10 buah yang masing masing mendapat perlakuan sebagai berikut: kelompok I permukaan semen gelas ionomer dietsa dengan asam fosfat 37% selama 30 detik, kelompok II digerinda , kelompok III dietsa dan digerinda, dan kelompok IV sebagai kelompok kontrol tidak dietsa dan tidak digerinda.
Analisa statistik dengan anova 2 arch ternyata ada perbedaan yang bermakna antar kelompok pada (p=?7.05). Sedang analisa statistik dengan uji t dengan p=o,05 menunjukkan ada perbedaan bermakna antara kelompok I-IV dan II-IV.
Disimpulkan bahwa dengan etsa asam selama 30 detik pada permukaan gelas ionomer diperoleh ikatan yang terbaik antara semen gelas ionomer dengan resin komposit."
Depok: Lembaga Penelitian Universitas Indonesia, 1993
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Annisa Akib
"SIK modifikasi resin dapat mengalami penurunan kekerasan permukaan pada pH kritis rongga mulut 5,5 yang dapat dicegah dengan pemberian ion kalsium dan fosfat. Ion tersebut bersumber dari CPP ACP. Pengaplikasian CPP ACP pada SIK modifikasi resin diketahui mampu mencegah terjadinya penurunan kekerasan permukaan SIK modifikasi resin. Saat ini telah ada penggabungan propolis pada CPP ACP yang bertujuan untuk meningkatkan sifat antibakteri tetapi diketahui penambahan propolis mengurangi pelepasan ion kalsium dan fosfat dari CPP ACP sehingga berpengaruh terhadap kemampuannya dalam melindungi SIK modifikasi resin dari penurunan kekerasan permukaan. Namun belum diketahui efek pengaplikasian CPP ACP yang ditambahkan propolis terhadap kekerasan permukaan SIK modifikasi resin.
Tujuan: penelitian ini bertujuan untuk membandingkan pengaruh aplikasi pasta CPP ACP dengan dan tanpa kombinasi propolis terhadap kekerasan permukaan semen ionomer kaca modifikasi resin.
Metode: Tiga puluh spesimen semen ionomer kaca modifikasi resin berbentuk silinder berukuran 6 x 3 mm, di polimerisasi menggunakan LED curing unit irradiansi 700 mW/cm2, selama 20 detik kemudian disimpan selama 1 hari kering dalam inkubator. Spesimen diuji kekerasan awalnnya dengan Knoop Hardness Tester (50 g selama 15 detik) dengan penjejasan 5 kali di 5 lokasi permukaan yang berbeda kemudian diambil nilai rata-ratanya untuk mempresentasikan permukaan spesimen. Spesimen dibagi menjadi tiga kelompok yaitu spesimen tanpa dan dengan pengolesan CPP ACP yang didiamkan 30 menit dan dengan pengolesan CPP ACP propolis yang didiamkan 30 menit. Seluruh spesimen direndam dalam larutan asam laktat pH 5,5 selama 24 jam dan diuji nilai kekerasan permukaan akhirnya. Data dianalisis menunggunakan uji statistik Kruskal Wallis dan uji Post Hoc Mann Whittney.
Hasil: hasil menunjukkan bahwa kekerasan awal seluruh spesimen adalah 30,68, 0,03 dan setelah diberi perlakuan kelompok A menjadi 24,96, 0,07, kelompok B menjadi 27,9, 0,01 dan kelompok C menjadi 26.5, 0,03. Pengaplikasian CPP ACP propolis pada SIK modifikasi resin menyebabkan penurunan kekerasan permukaan yang lebih besar dibandingkan dengan yang hanya diaplikasikan CPP ACP.

The surface hardness of Resin modified glass ionomer cement can be decrease at the critical pH of the oral cavity 5.5 which can be prevented by giving calcium and phosphate ions. These ions can be sourced from CPP ACP. Aplication CPP ACP is known to be able to prevent a decrease in the surface hardness of resin modified glass ionomer cement. Now there has been the addition of propolis to CPP ACP which functions as an antibacterial but it is known the further addition of propolis reduces ion calcium and phosphate release from CPP ACP which influences its capability in protecting RMGIC from further reduction of surface hardnes. However, the effect of CPP ACP application that added propolis is not yet known on resin modified glass ionomer cement.
Objective: this study aims to compare the effect of CPP ACP paste application with it and without a combination of propolis against the surface hardness of glass ionomer cement modified resin.
Methods: thirty specimens of Resin Modified Glass Ionomer Cement in cylindrical shape (6 x 3 mm), 1 day dray storage in the incubator and the specimen are polymerized for 20 seconds using a 700 mW/cm irradiance LED curing unit. The initial specimens were tested for hardness with Knoop Hardness Tester (50 g for 15 seconds) with 5 times of crushing in 5 different surface locations then the average value was taken to present the specimen surface. The specimens were divided into three groups: without CPP ACP application, CPP ACP and CPP ACP Propolis application which were allowed to stand for 30 minutes. All specimens were immersed in lactic acid pH 5.5 for 24 hours and tested for final surface hardness values. Data obtained analyzed using Kruskal Wallis dan Mann Whittney.
Results: the test showed that the initial hardness of all specimens were 30,68, 0,03 and after treatment group A becomes 24,96, 0,07, group B becomes 27,9, 0,01 and group C becomes 26.5, 0,03. There was a decrease surface hardness of the resin modified glass ionomer cement before and after immersion at all groups. The initial hardness of all specimens were 30,68, 0,03 and after treatment group A becomes 24,96, 0,07, group B becomes 27,9, 0,01 and group C becomes 26.5, 0,03. The application of CPP ACP propolis to RMGIC caused.
"
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jesica Uli Giovani
"Semen Ionomer Kaca (SIK) konvensional dapat mengalami penurunan kekerasan permukaan pada pH 5,5 sehingga membutuhkan pemberian ion kalsium dan fosfat yang dapat ditemukan pada CPP-ACP untuk mencegah penurunan kekerasan. Penelitian terhadap CPP-ACP tengah dilakukan dengan penambahan propolis yang ditujukan untuk menambah sifat antimikroba. Berdasarkan penelitian sebelumnya diketahui bahwa penambahan propolis pada CPP-ACP menyebabkan ion kalsium dan fosfat yang dilepaskan berkurang sehingga mungkin memengaruhi kemampuannya dalam mencegah penurunan kekerasan SIK konvensional. Namun belum diketahui efek CPP-ACP apabila ditambahkan propolis pada SIK konvensional.
Tujuan: Penelitian ini bertujuan untuk membandingkan pengaruh CPP-ACP dengan dan tanpa kombinasi propolis terhadap kekerasan permukaan SIK konvensional.
Metode: Tiga puluh spesimen SIK konvensional berbentuk silinder dengan diameter 6mm dan tebal 3 mm dibuat dan diletakkan dalam inkubator selama 24 jam. Spesimen lalu dilakukan pengujian kekerasan awal menggunakan Vickers Micro Hardness Tester dengan indenter Knoop, setiap spesimen diberikan indentasi dengan beban 50 g selama 15 detik sebanyak 5 kali diposisi berbeda pada permukaan dan diambil rata-rata untuk merepresentasikan seluruh permukaannya. Spesimen kemudian dibagi menjadi tiga kelompok (masing-masing 10 spesimen), yaitu yang tanpa diaplikasikan CPP-ACP, yang diaplikasikan CPP-ACP, dan yang diaplikasikan CPP-ACP propolis. Spesimen yang diaplikasikan CPP-ACP atau CPP-ACP propolis didiamkan selama 30 menit di dalam inkubator. Spesimen kemudian direndam dalam asam laktat pH 5,5 selama 24 jam lalu diuji kekerasan akhirnya.
Hasil: Kekerasan awal didapat sebesar 74,51±1,82KHNdan setelah perendaman pada kelompok tanpa diaplikasikan CPP-ACP menjadi 40,82±0,71KHN, kelompok yang diaplikasikan CPP-ACP menjadi 57,94±1,40KHN dan kelompok yang diaplikasikan CPP-ACP propolis menjadi 52,01±1,23KHN. Terdapat penurunan bermakna (p<0,05) antara kekerasan sebelum dan setelah perendaman di semua kelompok dan terdapat perbedaan bermakna (p<0,05) pada kekerasan antar kelompok dengan uji One-way ANOVA dan post hoc Tamhane.
Kesimpulan: Pengaplikasian CPP-ACP dengan kombinasi propolis pada SIK konvensional menyebabkan penurunan kekerasan permukaan lebih besar dibandingkan dengan yang hanya CPP-ACP.

Conventional glass ionomer cement (GIC) can be decreased in surface hardness at critical pH (5,5) so calcium and phosphate ions, which can be found in CPP-ACP, are needed to prevent it. Research about CPP-ACP were being developed by adding propolis to increase antimicrobial properties. However, study before stated that the addition of propolis into CPP-ACP could be decreasing ions release so probably decreasing its ability to prevent conventional GICs surface hardness reduction. But the effect of CPP-ACP if were added with propolis toward conventional GIC not yet known.
Aims: This study aims to compare the effect of CPP-ACP with and without propolis on conventional GICs surface hardness.
Methods: Thirty specimens of conventional GIC, 6mm in diameter and 3 mm in thick were prepared and saved in incubator for 24 hours. Specimens initial surface hardness were measured by Vickers Micro Hardness Tester with Knoop indenter. Each specimen was indented using 50 g weigh in 15 seconds for five times on different spot to represent all the surface hardness of the specimen and the mean value was calculated. Specimens then divided into three groups (each group contain 10 specimens), which were without CPP-ACP, applicated with CPP-ACP and applicated with CPP-ACP propolis. CPP-ACP or CPP-ACP propolis were applicated to conventional GIC and kept for 30 minutes in incubator. After that, specimens were immersed in lactic acid pH 5,5 for 24 hours and the final surface hardness were tested. The surface hardness values then were analyzed using One Way Anova and Post Hoc Tamhane test.
Result: Initial surface hardness value was 74,51±1,82KHN, and decreased after immersion. The final surface hardness value become 40,82±0, 71KHN on without CPP-ACP group, 57,94±1, 40KHN on with CPP-ACP group, and 52,01±1, 23KHN on with CPP-ACP propolis group. There were statistically significant (p<0.05) in specimens hardness reduction between before and after immersion in all groups and in hardness differences between groups after immersion.
Conclusion: Application of CPP-ACP combined with propolis on conventional GIC caused greater surface hardness reduction compared to CPP-ACP without propolis.
"
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Senyan Dwiseptyoga
"Latar Belakang: Kegagalan perawatan karies gigi dapat terjadi jika mineral intrafibrillar dentin tidak teremineralisasi secara biomimetik. Semen ionomer kaca (SIK) merupakan bahan restorasi gigi dengan kemampuan melepaskan ion kalsium yang merupakan bahan baku remineralisasi. Carboxymethyl chitosan (CMC) merupakan analog protein non-kolagen alami yang terbukti dapat menstabilkan ion kalsium fosfat dalam keadaan amorf dalam proses remineralisasi biomimetik. Pencampuran kedua bahan tersebut berpotensi menghasilkan bahan restorasi baru yang dapat meremineralisasi dentin secara biomimetik. Tujuan: Mengevaluasi hasil remineralisasi dentin yang tedemineralisasi setelah aplikasi material modifikasi SIK dengan CMC 5% dan 10% dengan memeriksa perubahan morfologi dan komposisi ion kalsium dentin. Metode: Proses remineralisasi dilakukan dengan mengaplikasikan material SIK, SIK-CMC 5% dan 10% selama 14 hari pada kavitas dentin yang terdemineralisasi dengan EDTA 17% selama 7 hari. Evaluasi morfologi dilakukan dengan Scanning Electron Microscope (SEM) dan nilai komposisi ion diperiksa dengan Energy Dispersive X-ray (EDX). Hasil: Terlihat perubahan morfologi tubulus dan permukaan dentin setelah aplikasi bahan SIK, SIK-CMC 5%, dan SIK-CMC 10% selama 14 hari yang dievaluasi dengan SEM. Hasil pemeriksaan EDX memperlihatkan peningkatan kandungan ion kalsium dan pembentukan hidroksiapatit setelah aplikasi material SIK-CMC 10%. Kesimpulan: Aplikasi modifikasi SIK dengan CMC berpengaruh terhadap perubahan morfologi dan komposisi ion kalsium pada dentin yang terdemineralisasi.

Background: Failure of dental caries treatment can occur if intrafibrillar dentin minerals are not biomimetically mineralized. Glass ionomer cement (GIC) is a dental restoration material with the ability to release calcium ions which are the raw material for remineralization. Carboxymethyl chitosan (CMC) is a natural non-collagen protein analogue which has been proven to stabilize calcium phosphate ions in an amorphous state in a biomimetic remineralization process. Mixing these two materials has the potential to produce new restorative materials that can biomimetically remineralize dentin. Objective: To evaluate the remineralization results of demineralized dentin after application of GIC modified material with 5% and 10% CMC by examining changes in the morphology and composition of dentin calcium ions. Method: The remineralization process was carried out by applying SIK material, SIK-CMC 5% and 10% for 14 days to the demineralized dentin cavity with 17% EDTA for 7 days. Morphological evaluation was carried out using a Scanning Electron Microscope (SEM) and ion composition values were examined using Energy Dispersive X-ray (EDX). Results: Changes in tubule morphology and dentin surface were seen after application of SIK, SIK-CMC 5%, and SIK-CMC 10% for 14 days as evaluated by SEM. The EDX examination results showed an increase in calcium ion content and hydroxyapatite formation after application of 10% SIK-CMC material. Conclusion: Application of GIC modification with CMC affects changes in morphology and calcium ion composition in demineralized dentin.
"
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2023
SP-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dicky Yudha Andhika Zikrullah
"Latar Belakang: SIK sebagai bahan restorasi memiliki kemampuan untuk berikatan secara kimiawi terhadap struktur gigi dan kemampuan melepaskan fluoride sehingga cocok digunakan pada pasien dengan risiko karies tinggi namun memiliki kekuatan mekanis yang buruk. Modifikasi bahan restorasi SIK melalui penggabungan dengan bahan bioaktif untuk mendapatkan manfaat seperti meningkatnya sifat mekanis, sifat antibakteri dan potensi remineralisasi telah di sebutkan pada beberapa literatur penelitian. Pada studi ini, bubuk carboxymetyl-chitosan (CMC) ditambahkan pada komponen bubuk dari SIK konvensional.
Tujuan: Menganalisis pengaruh modifikasi material semen ionomer kaca (SIK) dengan carboxymetyl-chitosan (CMC) terhadap Kekuatan kompresi dan morfologi permukaan.
Metode: Tiga puluh lubang pada cetakan akrilik silindris Diameter 4 mm tinggi 8 mm diisi dengan material SIK (FUJI IX, GC corp, Japan), modifikasi SIK dengan CMC 5% dan 10% yang di campurkan pada komponen bubuk SIK. Sampel dibagi menjadi 3 kelompok yaitu kelompok kontrol SIK (n=10) dan kelompok SIK-CMC 5% (n=10) serta kelompok SIK-CMC 10% (n=10). Kekuatan kompresi diukur dengan menggunakan Universal Testing Machine (Tensilon RTG-10Kn, A&D, Japan) dan dihitung dengan rumus KK= P/(πr2) dimana P adalah beban maksimum dan r adalah radius dari spesimen. Data dianalisis dengan analisis statistik menggunakan One-Way ANOVA dan Post hoc Bonferroni (p<0,5). Morfologi permukaan material modifikasi SIK-CMC dan kontrol di amati dengan menggunakan Scanning Electronic Microscope (EVO MA-0, Zeiss, Germany).
Hasil: Terdapat perbedaan bermakna antara kelompok modifikasi SIK-CMC 5% dan SIK-CMC 10% dengan kelompok kontrol (One-Way ANOVA; p<0,05). Berdasarkan uji Post Hoc Bonferroni (p<0,5) terdapat perbedaan yang bermakna Kekuatan kompresi pada material modifikasi SIK-CMC 5 % dan SIK-CMC 10% dengan kelompok kontrol SIK. Modifikasi SIK dengan CMC mempengaruhi perubahan morfologi berupa berkurangnya porusitas dan bertambahnya permukan retakan seiring dengan penambahan persentase CMC.
Kesimpulan: Modifikasi SIK dengan Penambahan CMC Mengurangi kekuatan kompresi dengan rerata hasil paling rendah pada penambahan CMC 10%. Porusitas permukaan material modifikasi SIK dengan penambahan CMC memiliki kecenderungan berkurang dan bertambahnya permukaan retakan yang melebar seiring dengan penambahan persentase CMC.

Background: GIC as a restorative material has the ability to chemically bond to the structure of teeth and the ability to release fluoride so that it is suitable for use in patients with a high caries risk but has poor mechanical strength. Modification of GIC restorative materials with combination with bioactive materials to obtain benefits such as increasing mechanical properties, antibacterial properties and remineralization potential has been mentioned in some research literature. In this study, Carboxymethyl-chitosan (CMC) is added to the powder phase of conventional GIC to increase the compressive strength.
Objective: to analyze the influence of modified GIC with the addition of CMC on compressive strength and surface morphology.
Methods: Thirty holes in a cylindrical acrylic mold, each hole has a diameter of 4 mm and thickness of 8 mm, were filled with conventional GIC restorative material (FUJI IX, GC corp, Japan), modified GIC with 5% CMC and 10% CMC added in the powder phase. The samples were divided into 3 groups: control group GIC (n=10), GIC-CMC 5% group (n=10) and GIC-CMC 10% group (n=10). The compressive strength measurement performed with Universal testing machine (Tensilon RTG-10Kn, A&D, Japan), and were calculated according to the following equation: CS= P/(πr2)
Where P is the maximum load and r is the radius of the cylinder-shaped specimen Statistical analysis was done by One-Way ANOVA and Post hoc Bonferroni (p<0.05). The surface morphology of the material modification of GIC-CMC and control group was observed using the Scanning Electronic Microscope (EVO MA-0, Zeiss, Germany).
Results: There is a significant difference between the GIC-CMC 5% and GIC-CMC 10% modification groups and the control group (One-Way ANOVA; p<0.05). Based on the Post Hoc Bonferroni (p<0.5) test there is a significant difference in compressive strength in SIK-CMC modification materials of 5% and SIK-CMC of 10% with the SIK control group. Modification of SIK with CMC affects morphological changes in the form of reduced porosity and increased fractures along with the addition of CMC percentage.
Conclusion: Modification of GIC with CMC addition reduces compressive strength with the lowest average yield at 10% CMC addition. The surface porusity of SIK modification material with the addition of CMC tends to decrease and increase the surface of cracks that widen along with the addition of CMC percentage.
"
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jauza Khalilawisty
"Penelitian ini bertujuan untuk mengetahui pengaruh chlorhexidine gluconate 0,2% yang tidak mengandung alkohol terhadap kekasaran Semen Ionomer Kaca yang dilapisi coating agent. Spesimen Semen Ionomer Kaca Konvensional dan Semen Ionomer Kaca Modifikasi Resin yang telah dilapisi varnish dan nanofilled coating agent direndam dalam aquades dan diletakkan pada inkubator 37 o C selama 24 jam. Spesimen dikeluarkan dari inkubator dan direndam dalam chlorhexidine gluconate 0,2% yang tidak mengandung alkohol selama 2 menit setiap hari. Spesimen direndam kembali dalam aquades dan diletakkan pada inkubator. Perendaman ini dilakukan selama dua minggu. Nilai kekarasan permukaan diuji menggunakan Surface Roughness Tester setelah perendaman dalam chlorhexidine gluconate 0,2% yang tidak mengandung alkohol pada harike-3, ke-7, dan ke-14.
Hasil menunjukkan bahwa terdapat perbedaan bermakna nilai kekasaran permukaan antar kelompok Semen Ionomer Kaca Konvensional maupun Semen Ionomer Kaca Modifikasi Resin yang dilapisi varnish dan nanofilled coating agent (p>0,05). Disimpulkan bahwa perendaman dapat mempengaruhi nilai kekasaran permukaan Semen Ionomer Kaca yang dilapisi coating agent."
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Falah Putra Caesarianto
"Perkembangan terkini dari semen ionomer kaca (SIK) telah menjadikannya sebagai sebuah bahan restorasi gigi yang sangat baik, namun sifat mekaniknya masih perlu ditingkatkan. Sifat mekanik dari semen ionomer kaca dapat ditingkatkan melalui inkorpoasi kristal nano fluorhidroksiapatit, salah satu mineral penyusun jaringan keras gigi sehingga memiliki biokompatibilitas yang baik. Penelitian ini bertujuan untuk mensintesis kristal nano fluorhidroksiapatit dengan tingkat fluoridasi yang berbeda melalui metode yang cepat dan efisien serta mengevaluasi pengaruh penambahan kristal nano fluorhidroksiapatit terhadap kekerasan mikro semen ionomer kaca yang telah dimodifikasi melalui inkorporasi kristal nano fluorhidroksiapatit. Kristal nano fluorhidroksiapatit dengan tingkat fluoridasi 0 hingga ~95% disintesis melalui metode presipitasi yang dibantu iradiasi gelombang mikro. Fase kristal, gugus fungsi, morfologi permukaan, dan tingkat fluoridasi dari bubuk yang telah disintesis ditentukan melalui difraksi sinar-X (XRD), spektroskopi inframerah transformasi Fourier (FTIR), mikroskop pemindai elektron (SEM), dan energy dispersive x-ray spectrometer (EDX) secara berturut-turut. Kemudian, bubuk fluorhidroksiapatit yang telah disintesis ditambahkan ke dalam semen ionomer kaca komersial (Fuji IX, GC Gold Label) dengan jumlah sebanyak 5 wt%, 7,5 wt%, dan 10 wt%. Semen ionomer kaca yang tidak mengalami penambahan fluorhidroksiapatit digunakan sebagai kelompok kontrol. Kekerasan mikro dari semen yang telah dikondisikan selama 24 jam di dalam air distilasi bersuhu 37 °C dievaluasi dengan penguji kekerasan mikro Vickers. Metode karakterisasi menunjukkan bahwa bubuk yang telah disintesis merupakan fluorhidroksiapatit berukuran nano dengan tingkat fluoridasi yang berbeda. Kekerasan mikro dari semen yang dimodifikasi menunjukkan nilai yang lebih tinggi (54-100 HV) dibanding kelompok kontrol (48,94 HV). Hasil menunjukkan bahwa penambahan fluorhidroksiapatit dengan tingkat fluoridasi yang berbeda pada penambahan sebanyak persentase massa yang sama tidak menghasilkan perbedaan signifikan pada kekerasan mikro semen yang dimodifikasi. Selain itu, kekerasan mikro dari semen yang dimodifikasi akan meningkat dengan penambahan fluorhidroksiapatit maksimum sebanyak 7,5 wt% dan kemudian berkurang dengan penambahan lebih lanjut.

Recent developments of glass ionomer cement (GIC) have made it to become an excellent dental restorative material, nevertheless, its mechanical properties still need to be improved. The mechanical strength of glass ionomer cement could be enhanced through the incorporation of fluorhydroxyapatite nanocrystal, one of the minerals that compose dental hard tissues and therefore have great biocompatibility. This study aims to synthesize fluorhydroxyapatite with different degrees of fluoridation through a fast and efficient method and to evaluate the effect of fluorhydroxyapatite nanocrystals addition to the microhardness of glass ionomer cement modified by the incorporation of fluorhydroxyapatite nanocrystals. Fluorhydroxyapatite nanocrystals with 0 to ~95% fluoridation degrees were synthesized through a microwave-assisted precipitation method. The crystal phase, functional groups, surface morphology, and fluoridation degrees of the synthesized powder were determined through X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) Spectroscopy, respectively. Thereafter, synthesized fluorhydroxyapatite powder was added to commercial glass ionomer cement (Fuji IX, GC Gold Label) with an amount of 5 wt%, 7.5 wt%, and 10 wt%. The glass ionomer cement which did not undergo fluorhydroxyapatite addition was used as the control group. The microhardness of the cement which has been conditioned for 24 hours in distilled water at 37 °C were evaluated with Vickers Microhardness Tester. Characterization methods revealed that the synthesized powder was nano-sized fluorhydroxyapatite with different degrees of fluoridation. The microhardness of the modified cement exhibited higher values (54-100 HV) compared to the control group (48.94 HV). The results showed that the difference in fluoridation degrees of fluorhydroxyapatite at the addition of the same mass percentage did not produce a significant difference in the microhardness among the modified cement. On the other hand, the microhardness of the modified cement would increase with the addition of fluorhydroxyapatite maximum at 7.5 wt% addition, and then decreases with further addition."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marlyn Sippy Prisetyo
"Latar Belakang: Atraumatic Restorative Treatment atau perawatan restoratif atraumatik adalah teknik perawatan minimal invasif untuk merestorasi gigi dengan menggunakan instrumentasi tangan. Material yang dapat digunakan untuk perawatan restoratif atraumatik adalah semen ionomer kaca. Baru-baru ini, beredar di pasaran Indonesia semen ionomer kaca Shofu FX Ultra yang diklaim dapat digunakan untuk ART. Dalam rongga mulut, restorasi semen ionomer kaca mengalami gaya mastikasi dan terpapar saliva. Belum ada penelitian mengenai pengaruh perendaman didalam larutan saliva buatan terhadap kekuatan tarik diametral semen ionomer kaca Shofu FX Ultra. Tujuan: Mengetahui pengaruh lama perendaman didalam larutan saliva buatan terhadap kekuatan tarik diametral Shofu FX Ultra. Metode: Pembuatan 36 spesimen semen ionomer kaca Shofu FX Ultra mengikuti standar ISO 9917-1/2007 dibagi ke dalam 6 kelompok perlakukan perendaman yaitu didalam larutan saliva buatan pH 7 dan pH 4,5 masing-masing didiamkan selama 1,7, 14 hari dalam inkubator 37° C. Nilai kekuatan tarik diametral diuji dengan alat Shimadzu Universal Testing Machine. Analisis data dengan uji statistik One Way Anova dan uji Independent Sample T-test. Hasil: Rerata nilai kekuatan tarik diametral setelah perendaman pada kelompok perlakuan perendaman pH 7 dengan lama perendaman (1,7, dan 14 hari secara berurutan) yaitu sebesar 6,40±0,45 MPa, 5,39±0,45 MPa, dan 5,30±0,46 MPa. Rerata nilai kekuatan tarik diametral setelah perendaman pada kelompok perlakuan perendaman pH 4,5 dengan lama perendaman (1,7, dan 14 hari secara berurutan) yaitu sebesar 4,83±0,54 MPa, 4,54±0,36 MPa, dan 3,51±0,39 MPa. Rerata kekuatan tarik diametral semen ionomer kaca yang direndam dalam larutan saliva buatan pH 7 dan pH 4,5 terdapat perbedaan bermakna secara statistik (p<0,05). Rerata kekuatan tarik diametral semen ionomer kaca antara pH 7 dengan pH 4,5 pada lama perendaman 1 hari, 7 hari, dan 14 hari terdapat perbedaan bermakna secara statistik (p<0,05). Nilai kekuatan tarik diametral setiap kelompok terdapat perbedaan bermakna, kecuali pada kelompok perendaman saliva buatan pH 7 antara lama perendaman 7 dan 14 hari serta perendaman saliva buatan pH 4,5 antara lama perendaman 1 dan 7 hari. Kesimpulan: Nilai kekuatan tarik diametral semen ionomer kaca Shofu FX Ultra lebih besar pada perendaman didalam larutan saliva buatan pH 7 daripada pH 4,5. Semakin lama perendaman, nilai kekuatan tarik diametral semen ionomer kaca Shofu FX Ultra semakin menurun.

Background: Atraumatic Restorative Treatment is a minimally invasive treatment technique to restore teeth using hand instrumentation. The material that can be used for atraumatic restorative treatment is glass ionomer cement. Recently, glass ionomer cement Shofu FX Ultra has been around in the Indonesian market and is claimed to be used for ART. In the oral cavity, the glass ionomer cement restoration is exposed to masticatory forces and saliva. There has been no research on the effect of immersion in artificial saliva solution on the diametral tensile strength of Shofu FX Ultra glass ionomer cement. Objective: To determine the effect of immersion time in artificial saliva solution on the diametral tensile strength of Shofu FX Ultra. Methods: Preparation of 36 specimens of Shofu FX Ultra glass ionomer cement according to the ISO 9917-1/2007 standard was divided into 6 groups by immersion treatment, namely in artificial saliva solution pH 7 and pH 4.5, each of which was left for 1.7, 14 days in incubator 37° C. The diametral tensile strength values were tested using the Shimadzu Universal Testing Machine. Data analysis with One Way ANOVA statistical test and Independent Sample T-test. Results: The mean diametral tensile strength values after immersion in the pH 7 immersion treatment group with long immersion (1.7, and 14 days respectively) were 6.40 ± 0.45 MPa, 5.39 ± 0.45 MPa, and 5.30±0.46 MPa. The mean values of diametral tensile strength after immersion in the immersion treatment group pH 4.5 with long immersion (1.7, and 14 days respectively) were 4.83 ± 0.54 MPa, 4.54 ± 0.36 MPa, and 3.51±0.39 MPa. The mean diametral tensile strength of glass ionomer cement between pH 7 and pH 4.5 at immersion time of 1 day, 7 days, and 14 days showed statistically significant differences (p<0.05). There was a significant difference in the diametral tensile strength values of each group, except for the artificial saliva immersion pH 7 group between 7 and 14 days and the artificial saliva immersion pH 4.5 between 1 day and 7 days. Conclusion: The diametral tensile strength value of Shofu FX Ultra glass ionomer cement was greater when soaked in an artificial saliva solution pH 7 than pH 4.5. The longer the immersion, the value of the diametral tensile strength of Shofu FX Ultra glass ionomer cement decreased."
Depok: Fakultas Kedokteran Gigi Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Grace Riska
"Latar Belakang: Salah satu material remineralisasi yang banyak digunakan adalah semen ionomer kaca (SIK). Namun dentin terdemineralisasi sesudah aplikasi SIK memiliki sifat mekanis yang berbeda dan lebih rendah daripada dentin normal karena remineralisasi yang terjadi adalah remineralisasi interfibril. Material carboxymethyl chitosan (CMC) bertindak sebagai analog protein nonkolagen yang mampu menstabilisasi nanocluster amorphous calcium phosphate (ACP) dalam proses remineralisasi intrafibril. Tujuan: Mengetahui pengaruh aplikasi modifikasi SIK-CMC5% dan SIK-CMC10% pada dentin terdemineralisasi terhadap kekerasan mikro, fasa mineral dan derajat kristalinitas dentin. Metode: Material SIK dilakukan pencampuran dengan CMC pada rasio 5% dan 10% menghasilkan SIK-CMC5% dan SIK-CMC10%. Kemudian, demineralisasi pada kavitas dentin terdemineralisasi dilakukan dengan aplikasi material SIK, SIK-CMC5% dan SIK-CMC10%. Akar gigi direndam dalam cairan phosphate-buffered saline selama 14 hari. Remineralisasi dentin dievaluasi dari kekerasan mikro melalui uji Vickers dan penilaian fasa mineral dan derajat kristalinitas dentin dari uji X-Ray Diffraction (XRD). Hasil: Kekerasan mikro dentin pada kelompok SIK-CMC5% dan SIK-CMC10% meningkat dibandingkan pada kelompok SIK. Pembentukan kristal hidroksiapatit ditemukan pada sampel SIK dan SIK-CMC, dengan derajat kristalinitas tertinggi pada sampel SIK-CMC10%. Kesimpulan: Semen Ionomer Kaca modifikasi Carboxymethyl Chitosan 10% lebih efektif dalam meningkatkan nilai kekerasan mikro dan mempengaruhi pembentukan fasa mineral kristal hidroksiapatit dan derajat kristalinitas.

Background: One of the widely used remineralization materials is glass ionomer cement (GIC). However, demineralized dentine after GIC application has different and lower mechanical properties than normal dentin because the remineralization that occurs is interfibril remineralization. Carboxymethyl chitosan (CMC) acts as noncollagenous protein analog that can stabilize amorphous calcium phosphate (ACP) nanoclusters in intrafibril remineralization. Objective: To determine the effect of the application of modified GIC-CMC5% and GIC-CMC10% on the microhardness, mineral phase and degree of crystallinity of demineralized dentin. Methods: GIC material was mixed with CMC at ratio 5% and 10% to produce GIC-CMC5% and GIC-CMC10%. Remineralization of demineralized dentin cavity was carried out by applying GIC, GIC-CMC5% and GIC-CMC10% for 14 days. Remineralization was evaluated from microhardness value through Vickers test and assessment of mineral phase and degree of dentin crystallinity from X-Ray Diffraction (XRD) test. Results: Dentin microhardness in the GIC-CMC5% and GIC-CMC10% was increasing compared to the CIC group. The formation of hydroxyapatite crystals was found in the GIC and GIC-CMC samples with the highest degree of crystallinity in the GIC-CMC10% sample. Conclusion: Modified Glass Ionomer Cement with 10% Carboxymethyl Chitosan is more effective in increasing the microhardness value and affecting the formation of the hydroxyapatite crystalline mineral phase and the degree of crystallinity."
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2023
SP-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dicky Yudha Andhika Zikrullah
"Latar Belakang : SIK sebagai bahan restorasi memiliki kemampuan untuk berikatan secara kimiawi terhadap struktur gigi dan kemampuan melepaskan fluoride sehingga cocok digunakan pada pasien dengan risiko karies tinggi namun memiliki kekuatan mekanis yang buruk. Modifikasi bahan restorasi SIK melalui penggabungan dengan bahan bioaktif untuk mendapatkan manfaat seperti meningkatnya sifat mekanis, sifat antibakteri dan potensi remineralisasi telah di sebutkan pada beberapa literatur penelitian. Pada studi ini, bubuk carboxymetyl-chitosan (CMC) ditambahkan pada komponen bubuk dari SIK konvensional. Tujuan: Menganalisis pengaruh modifikasi material semen ionomer kaca (SIK) dengan carboxymetyl-chitosan (CMC) terhadap Kekuatan kompresi dan morfologi permukaan. Metode: Tiga puluh lubang pada cetakan akrilik silindris Diameter 4 mm tinggi 8 mm diisi dengan material SIK (FUJI IX, GC corp, Japan), modifikasi SIK dengan CMC 5% dan 10% yang di campurkan pada komponen bubuk SIK. Sampel dibagi menjadi 3 kelompok yaitu kelompok kontrol SIK (n=10) dan kelompok SIK-CMC 5% (n=10) serta kelompok SIK-CMC 10% (n=10). Kekuatan kompresi diukur dengan menggunakan Universal Testing Machine (Tensilon RTG-10Kn, A&D, Japan) dan dihitung dengan rumus KK= P/(πr2) dimana P adalah beban maksimum dan r adalah radius dari spesimen. Data dianalisis dengan analisis statistik menggunakan One-Way ANOVA dan Post hoc Bonferroni (p<0,5). Morfologi permukaan material modifikasi SIK-CMC dan kontrol di amati dengan menggunakan Scanning Electronic Microscope (EVO MA-0, Zeiss, Germany). Hasil: Terdapat perbedaan bermakna antara kelompok modifikasi SIK-CMC 5% dan SIK-CMC 10% dengan kelompok kontrol (One-Way ANOVA; p<0,05). Berdasarkan uji Post Hoc Bonferroni (p<0,5) terdapat perbedaan yang bermakna Kekuatan kompresi pada material modifikasi SIK-CMC 5 % dan SIK-CMC 10% dengan kelompok kontrol SIK. Modifikasi SIK dengan CMC mempengaruhi perubahan morfologi berupa berkurangnya porusitas dan bertambahnya permukan retakan seiring dengan penambahan persentase CMC.
Kesimpulan: Modifikasi SIK dengan Penambahan CMC Mengurangi kekuatan kompresi dengan rerata hasil paling rendah pada penambahan CMC 10%. Porusitas permukaan material modifikasi SIK dengan penambahan CMC memiliki kecenderungan berkurang dan bertambahnya permukaan retakan yang melebar seiring dengan penambahan persentase CMC

Background: GIC as a restorative material has the ability to chemically bond to the structure of teeth and the ability to release fluoride so that it is suitable for use in patients with a high caries risk but has poor mechanical strength. Modification of GIC restorative materials with combination with bioactive materials to obtain benefits such as increasing mechanical properties, antibacterial properties and remineralization potential has been mentioned in some research literature. In this study, Carboxymethyl-chitosan (CMC) is added to the powder phase of conventional GIC to increase the compressive strength. Objective: to analyze the influence of modified GIC with the addition of CMC on compressive strength and surface morphology. Methods: Thirty holes in a cylindrical acrylic mold, each hole has a diameter of 4 mm and thickness of 8 mm, were filled with conventional GIC restorative material (FUJI IX, GC corp, Japan), modified GIC with 5% CMC and 10% CMC added in the powder phase. The samples were divided into 3 groups: control group GIC (n=10), GIC-CMC 5% group (n=10) and GIC-CMC 10% group (n=10). The compressive strength measurement performed with Universal testing machine (Tensilon RTG-10Kn, A&D, Japan), and were calculated according to the following equation: CS= P/(πr2)
Where P is the maximum load and r is the radius of the cylinder-shaped specimen
Statistical analysis was done by One-Way ANOVA and Post hoc Bonferroni (p<0.05). The surface morphology of the material modification of GIC-CMC and control group was observed using the Scanning Electronic Microscope (EVO MA-0, Zeiss, Germany).
Results: There is a significant difference between the GIC-CMC 5% and GIC-CMC 10% modification groups and the control group (One-Way ANOVA; p<0.05). Based on the Post Hoc Bonferroni (p<0.5) test there is a significant difference in compressive strength in SIK-CMC modification materials of 5% and SIK-CMC of 10% with the SIK control group. Modification of SIK with CMC affects morphological changes in the form of reduced porosity and increased fractures along with the addition of CMC percentage.Conclusion: Modification of GIC with CMC addition reduces compressive strength with the lowest average yield at 10% CMC addition. The surface porusity of SIK modification material with the addition of CMC tends to decrease and increase the surface of cracks that widen along with the addition of CMC percentage.
"
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>