Dosimetri lapangan kecil dan non-standar yang berkaitan dengan penggunaan berkas Flattening Filter Free (FFF) merupakan sebuah tantangan karena adanya efek pertubasi yang disebabkan oleh desain detektor. Fenomena ini mendorong para peneliti untuk melakukan studi lebih lanjut mengenai respon detektor. Pada penelitian ini, dilakukan pemisahan radiasi hamburan dan berkas primer dari berkas FFF 6 MV untuk mempelajari respon detektor pada masing-masing kondisi pengukuran sehingga peranan setiap fenomena yang mempengaruhi respon detektor dapat dipahami dengan lebih baik. Detektor bilik ionisasi dan film Gafchromic digunakan pada tiga konfigurasi pengukuran yang merepresentasikan pengukuran lapangan terbuka dan pendekatan terhadap pengukuran dalam berkas primer dan radiasi hamburan, dirincikan sebagai berikut: (i) detektor diposisikan di bawah blok baja, sehingga detektor hanya terpapar radiasi hamburan; (ii) detektor diposisikan dalam mini phantom, sehingga detektor terpapar berkas primer dengan radiasi hamburan minimum; (iii) detektor diposisikan pada lapangan standar terbuka yang merupakan superposisi berkas primer dan radiasi hamburan. Hasil pengukuran menunjukkan bahwa respon detektor bergantung pada desain detektor (seperti ukuran volume aktif) terutama pada lapangan kecil. Respon pada lapangan terbuka dapat direproduksi dari konfigurasi berkas primer dan hamburan dengan diskrepansi 1,0 – 36%. Efek volume averaging dan efek pertubasi detektor yang mempengaruhi respon detektor dapat teramati pada konfigurasi berkas hamburan.
Small fields dosimetry which related to the use of FFF beams is a great challenge because of perturbation effects caused by the size of the detector’s active volume or detector’s materials. This phenomenon encourages researchers to do further study about detectors response. In this work, scatter and primary radiation from 6 MV FFF beams were studied to evaluate the detectors’ response in small fields for a better understanding in the contribution of every phenomenon. Ion chamber and Gafchromic films were used in three measurement configurations representing open field measurement and approximations of both primary and scatter part of the beam, described as follows: (i) detectors positioned under steel block, exposing the detectors only to scatter part of radiation field, (ii) detectors positioned inside mini phantom, approximating the detectors response to primary radiation with minimum scatter, (iii) detectors positioned in the standard open field, which was the superposition of the primary and scatter radiation. The results showed that detector responses were heavily depended on its design (i.e. active volume) especially in small beams. The response in the open field could be reproduced from the blocked and primary beam set-up with the discrepancy ranging from 1.0% to 36%. Moreover, the volume averaging and detectors’ perturbation effects affecting the detector response could be observed in blocked beam.
"Currently, one of the most used procedures in radiology for diagnosing diseases is diagnostic X-ray. This procedure is often applied in various medical examinations, such as medical check-ups, early cancer detection, and brain hemorrhage detection. Therefore, it is important to determine the amount of scattered radiation produced during this procedure to evaluate the radiation dose received by patients, personnel, and the members of the public. This study aims to evaluate how scattered radiation changes with scatter angle and tube voltage using the Monte Carlo method. This study also evaluates the scattered radiation distribution from patients during Trout and Kelly procedures and supine AP chest radiography. The study uses the Monte Carlo simulation using PHITS software to model scattered radiations with variations of position and tube voltage. The controlled variables are tube current (5 mAs), field size (20×20 ðð2 for Trout and Kelly procedures, 35×43 ðð2 for supine AP chest radiography), focus-to-detector distance (100 cm for Trout and Kelly, 180 cm for supine AP chest radiography), and phantom dimensions. The phantoms used are water blocks with tissue-equivalent density, masonite blocks, and water ellipsoids. The independent variables are scatter angle (30° to 135°) and tube voltage (70 kV to 100 kV). The dependent variables are primary kerma and scatter kerma, measured at 1 m from the focal point and the center of the phantom. Scatter fraction curves from the simulation are compared with literature data and measurements for result verification. Study results show that the 30° angle shows the highest increase in scattered radiation, up to a factor of 2.71, while the 135° angle shows the lowest increase, at a factor of 1.21. The simulated scatter fraction curves have a pattern similar to those from literature data and measurements, with the 80° angle most closely matching the reference literature and the 90° angle for measurement verification. Compared to the Trout and Kelly procedures, the supine AP chest radiography procedure produces a greater scatter fraction, up to a factor of 4.27. Secondary radiation shielding calculations need to be improved by changing the focus-to-detector distance to 180 cm and the field size to 35×43 ðð2.
"