Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16 dokumen yang sesuai dengan query
cover
Yanda Putra
Abstrak :
ABSTRAK
Pada skripsi ini dilakukan pemodelan dan simulasi reaktor unggun tetap aliran membalik heterogen satu dimensi, adiabatik untuk reaksi oksidasi S02 (dalam arah aksial) dengan mempertimbangkan faktor-faktor hidrodinamika yang ada pada reaktor, juga perpindahan massa dan energi antar fasa ( fasa gas dan fasa padatan ), serta reaksi permukaan.

Reaktor unggun tetap aliran membalik merupakan reaktor dengan arah aliran gas yang selalu berbalik untuk menjebak zona panas yang ada sehingga diperoleh pemanasan sendiri (autotermal) sehingga temperatur reaktor akan naik untuk rentang waktu yang ditentukan.

Model yang dikembangkan dibagi dalam dua fasa, yaitu fasa gas dan fasa padatan. Penyelesaian persamaan untuk kedua fasa dilakukan dengan mempergunakan metoda kolokasi orthogonal tujuh titik seperti yang telah dikembangkan oleh Finlayson. Persamaan aljabar dalam bentuk matriks yang diperoleh kemudian diselesaikan secara simultan dengan menggunakan metode Runge Kutta orde empat.

Hasil yang didapatkan dalam simulasi ini yaitu berupa profil temperatur dan konversi baik itu di fasa gas ataupun di fasa padat. Variasi berbagai parameter dilakukan untuk mengetahui perilaku model tersebut pada berbagai kondisi.

Hasil simulasi menunjukkan bahwa konversi dan temperatur akan meningkat dengan semakin lamanya cycle time. Sedangkan peningkatan jari-jari pellet akan menurunkan temperatur dan konversi. Pertambahan panjang reaktor akan meningkatkan temperatur dan konversi sedangkan pertambahan fraksi dari umpan akan menyebabkan kenaikan temperatur, tetapi hal ini akan menyebabkan adanya penurunan pada konversi.
2001
S49161
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agustina Rahayu
Abstrak :
Gasifikasi pada umumnya menghasilkan gas sintesis dengan rasio mol H2/CO < 2. Gasifikasi dengan menggunakan uap air dapat meningkatkan komposisi H2 dalam gas sintesis. Kinetika reaksi gasifikasi dapat ditingkatkan dengan menggunakan katalis K2CO3. Laju pemanasan terkontrol menentukan ukuran pori arang yang berpengaruh pada luas permukaan reaksi gasifikasi dan komposisi H2 dan CO dalam gas sintetis. Penelitian sebelumnya, pirolisis dilakukan tanpa memperhatikan kecepatan pirolisis. Percobaan dilakukan dengan metode steam catalytic gasification yang diarahkan untuk mencapai kondisi optimum untuk menghasilkan yield gas sintesis maksimum dengan rasio mol H2/CO≈2 dengan menggunakan arang batubara dengan luas permukaan yang telah diketahui. Laju pemanasan yang cepat pada tahap pirolisis akan meningkatkan surface area arang, sehingga yield gas akan meningkat. Penelitian ini dilakukan dengan mengumpankan partikel arang batubara lignit Indonesia dan katalis K2CO3 ke dalam reaktor fixed bed dengan variasi rasio steam/char (2,2; 2,9; 4,0), dan suhu gasifikasi (750˚C, 825˚C, dan 900˚C). Rasio H2/CO tertinggi yang didapat dari kondisi suhu 750˚C dan rasio steam/char 2,2 yaitu 1,682. Yield gas terbesar yang didapat dari penelitian ini adalah 0,504 mol/g pada suhu 900˚C dan rasio steam/char 2,9. Kondisi optimum untuk produksi gas sintesis adalah pada suhu 750˚C dan rasio steam/char 2,2 dengan yield 0,353 dan rasio H2/CO 1,682. ......Generally, gasification produces syngas with H2/CO mole ratio <2. Gasification uses steam to improve the composition of H2 in the syngas. Gasification reaction kinetics can be improved by using K2CO3 catalyst. Controlled heating rate determines the pore size of charcoal that affects surface area of gasification reaction and composition of H2 and CO in the syngas. Previous studies, pyrolisis process was performed without regard to pyrolysis rate. Experiments was performed by catalytic steam gasification using charcoal which has known surface area to achieve optimum conditions and produce maximum yield of syngas with mole ratio of H2/CO ≈ 2. Rapid heating rate on pyrolysis stage will increase the surface area of charcoal, so it will increase gas yield. This study was performed by feeding Indonesian charcoal particles and K2CO3 catalyst into fixed bed reactor with variation of ratio of steam/charcoal (2.2; 2.9; 4.0), and gasification temperature (750˚C, 825˚C, and 900˚C). Highest ratio of H2/CO obtained at temperature of 750˚C and steam/charcoal ratio of 2.2 was 1.682. Largest gas yield obtained from this study was 0.504 mol/g at temperature of 900˚C and steam/charcoal ratio of 2.9. The optimum conditions for syngas production was temperature of 750˚C and steam/charcoal ratio of 2.2 with gas yield of 0.353 and H2/CO ratio of 1.682.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35466
UI - Tesis Membership  Universitas Indonesia Library
cover
Reynaldi Rachmat
Abstrak :
Pada penelitian ini mengevaluasi kinerja katalis berbasis MnOx dengan penyangga karbon aktif berbentuk granular atau pellet atau GAC dalam mendekomposisi keluaran sisa ozon yang tidak diinginkan dalam emisi gas buang dari industri-industri yang menggunakan ozon. Penelitian ini meggunakan reaktor unggun isian (packed bed reactor) dengan menggunakan Karbon Aktif berukuran 18-35 mesh, 35-60 mesh, dan 60-100 mesh yang belum diaktivasi dan sudah diaktivasi dengan variasi loading MnOx sebesar 0%-w, 1%-w, dan 2%-w. Preparasi untuk menggabungkan kedua katalis ini menggunakan metode impregnasi dan kalsinasi. Katalis dikarakterisasi dengan menggunakan SEM-EDX dan BET. Kadar ozon sebelum dan setelah dekomposisi oleh katalis dihitung dengan menggunakan iodometri. Pada penelitian ini dievaluasi bahwa GAC berukuran 35-60 mesh dan 60-100 mesh yang sudah diaktivasi dengan aktivasi kimia dan fisika dan memiliki loading MnOx memiliki nilai konversi ozon sampai 100% dan waktu konversi lebih dari 1440 menit atau 24 jam.
This research evaluate performance of MnOx based catalyst with activated carbon support in the form of granular or pellet (GAC) in decomposing unwanted residual ozone in the exhaust emissions from industries that use ozone. This research uses packed bed reactor which is filled by activated carbon with diameter of 18-35 mesh, 35-60 mesh, and 60-100 mesh which is yet to be activated and already activated with MnOx loading MnOx of 0%-w, 1%-w, and 2%-w. Preparation to combine both of the catalysts and the support is by using impregnation and calcination method. The catalyst will be characterized using SEM-EDX and BET. Ozone concentration before and after decomposition by the catalyst is calculated using iodometric method. This research evaluate that GAC which is already activated with diameter of 35-60 mesh and 60-100 mesh, and with MnOx loading has ozone conversion value up to 100% with conversion time over 1440 minutes or 24 hours.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64305
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nafisa Dewi Shafira
Abstrak :
Gamma-valerolakton (GVL) adalah senyawa organik turunan dari asam levulinat yang memiliki banyak manfaat di berbagai sektor. Penelitian ini dilakukan untuk mengetahui pengaruh tekanan dan suhu gas umpan terhadap kinerja reaktor trickle bed untuk produksi GVL dari segi konversi asam levulinat, yield GVL, dan selektivitas GVL. Mekanisme yang terjadi adalah asam levulinat yang sudah dilarutkan dengan air deionisasi akan melalui proses hidrogenasi menghasilkan senyawa intermediet yaitu 4-HPA. Kemudian, terjadi proses esterifikasi intermolekul untuk menghasilkan GVL. Katalis yang digunakan adalah Ru/C dengan muatan Ru sebesar 5 wt%. Eksperimen diawali dengan persiapan bahan baku, lalu dilakukan karakterisasi katalis. Kemudian digunakan reaktor berdiameter 2,01 cm den gan unggun katalis setinggi 24 cm. Reaktan cair (asam levulinat) dan gas hidrogen direaksikan dengan kondisi operasi temperatur 90 °C – 150 °C, dan tekanan 5 dan 10 bar. Penelitian pada tekanan rendah dilakukan untuk mengurangi penggunaan hidrogen berlebih sehingga proses menjadi lebih ekonomis. Setelah reaksi berlangsung, asam levulinat sebagai bahan baku terkonversi menjadi dua senyawa yaitu 4-HPA dan GVL. Produk kemudian dianalisis dengan High-Performance Liquid Chromatography. Setelah berlangsungnya reaksi, asam levulinat sebagai bahan baku terkonversi menjadi dua jenis produk, yaitu senyawa intermediate 4-HPA dan produk utama GVL. Pada penelitian ini, kondisi terbaik untuk memproduksi GVL adalah pada tekanan 10 bar dan suhu 150 °C dengan yield GVL 72%, selektivitas GVL 73%, dan konversi asam levulinat 97%. Berdasarkan tren yang diamati, semakin meningkatnya tekanan dan suhu yang digunakan, maka hasil yang diperoleh semakin optimal. ......Gamma-valerolactone (GVL) is an organic compound derived from levulinic acid which has many benefits in various sectors. This research was conducted to determine the effect of feed gas pressure and temperature on the performance of trickle bed reactors for GVL production in terms of levulinic acid conversion, GVL yield, and GVL selectivity. The mechanism that occurs is that levulinic acid which has been dissolved in deionized water will go through a hydrogenation process to produce an intermediate compound, namely 4-HPA. Then, an intermolecular esterification process occurs to produce GVL. The catalyst used was Ru/C with a 5 wt% Ru. The experiment started with raw material preparation, and catalyst characterization, then a 2.01 cm diameter reactor with a 24 cm high catalyst bed was used. Liquid reactants (levulinic acid) and hydrogen gas were reacted under operating conditions of temperature 90 °C – 150 °C, and pressures of 5 and 10 bar. Research at low pressure is carried out to reduce the use of excess hydrogen so that the process becomes more economical. After the reaction takes place, levulinic acid as a raw material is converted into several compounds including levulinic acid, 4-HPA, and GVL. Products were analyzed with High-Performance Liquid Chromatography. After the reaction takes place, levulinic acid as a raw material is converted into two types of products, namely the intermediate compound 4-HPA and the main product GVL. In this study, the best conditions for producing GVL were at a pressure of 10 bar and a temperature of 150 °C with a yield of 72% GVL, 73% selectivity of GVL, and 97% conversion of levulinic acid. Based on the observed trend, the higher the pressure and temperature used, the more optimal the results obtained.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putera Anindita
Abstrak :
Dalam skripsi ini dilakukan pemodelan dan simulasi reaktor unggun tetap non-isotemal, non-adibalik untuk reaksi reformasi uap air dengan model heterogen dua dimensi (arah aksial dan radial) dengan mempertimbangkan faktor-faktor hidrodinamika yang ada pada reaktor juga perpindahan massa dan energi antar fasa (fasa ruah dan fasa partikel katalis), serta reaksi pennukaan. Mekanisme reaksi mengacu pada korelasi kinetika yang dikemukakan oleh Akers dan Camp. Model yang telah dikembangkan dibagi dalam dua sistem, yaitu skala reaktor dan skala pelet katalis. Penyelesaian persamaan skala partikel katalis dilakukan dengan metode kolokasi ortogonal enam titik. Sedangkan persamaan-persamaan diferensial parsial orde dua skala reaktor diselesalkan dcngan menggunakan metode beda hingga (finite difference) dengan formula central finite difference unluk penyelesaian arah radial, dan backward finite difference untuk arah aksial. Dari hasil simulasi diperoleh bahwa unluk reaksi reformasi uap air, kenaikan temperatur Fluida masuk reaktor dari 673 K menjadi 823 K akan menaikkan harga konversi 10,8 % dari harga awal. Sebaliknya kenaikan tekanan fluida masuk reaktor dari 26 bar menjadi 32 bar akan menurunkan konversi sebesar 4,2 %. Jika dihubungkan dengan dimensi reaklor, maka pada harga konversi yang kecil, kenaikan harga yield yang besar hanya membutuhkan pertambahan volume reaktor yang kecil. Sebaliknya pada harga konversi yang besar, maka kenaikan harga konvcrsi yang kecil akan membutuhkan pcrtambahan volume reaktor yang besar. Dengan mengubah mol CH4 umpan maka pertambahan jumlah rasio umpan H2OCH4 dari 2 hingga 4 akan mengubah konvcrsi CH4 dari 0,634 menjadi 0,713. Perubahan ukuran diameter kalalis dari 0,002 m menjadi 0,02 m akan menurunkan konversi total sebesar 57,3 % dari konversi mula-mula.
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49169
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrie Hariyanto
Abstrak :
Makalah ini membahas tentang pemodelan dan simulasi reaktor unggun tetap (fixed bed reacror) heterogen nonisotemlal nonadiabatik dua dimensi pada keadaan tunak (steady srare). Model heterogen ini membedakan kedua fasa yang terlibat yaitu fasa gas dan fasa padatan, untuk masing-masing pada skala reaktor dai! skala partikel katalis. Pola aliran fasa gas di skala reaktor dimodelkan dengan menggunakan konsep dispersi aksial dan radial. Untuk skala partikel diperhitungkan faletor difusi dengan menggunakan pendekatan difusi efektif, dimana bersama-sama dengan suku reaksi membentuk model untuk skala partikel katalis. Reaksi yang dipilih sebagai contoh reaksi adalah reaksi reformasi kukus (steam rdorming) dengan kinetika yang dikembangkan oleh Froment dan Xu. Data- data hasil pengembangan Froment dan Xu tersebut digunakan sebagai data validasi model. Penyelesaian skala realctor untuk arah aksial dan radial dilakukan masing-masing dengan menggunakan metode kolokasi ortogonal delapan titik seperti yang dikembangkan oleh Finlayson. Persamaan aljabar dalam bentuk matriks yang diperoleh kemudian diselesaikan dengan menggunakan metode Newton-Raphson. Unruk skala partikel katalis juga digunakan metode kolokasi ortogonal delapan titik untuk geometri sferis. Persamaan-persamaan skala reaktor dan skala partikel tersebut diselesaikan secara serentak (simultan) sampai tingkat konvergensi yang diinginkan. Dari hasil simulasi, reaktor unggun tetap dengan kinetika Froment dan Xu dapat dimodelkan dengan baik melalui model heterogen dua dimensi tersebut. Hasil yang didapatkan berupa profil konsentrasi dan temperatur di skala partikel dan skala reakton Variasi berbagai parameter dilakukan untuk mengetahui perilaku model tersebut pada berbagai kondisi. Hasil simulasi menunjukkan bahwa baik konversi CH4 maupun H20 meningkat dengan naiknya temperatur umpan sedangkan peningkatan tekanan umpan menyebabkan konversi keduanya menurun. Hasil simulasi juga menunjukkan bahwa meningkatnya rasio umpan H2O/CH4 menyebabkan konversi CH4 meningkat sedangkan konversi H20 menurun.
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49168
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardha Bariq Fardiansyah
Abstrak :
Hidrogenasi katalitik CO2 menjadi CH3OH memiliki prospek yang cerah seiring dengan permintaan pasar yang tinggi. Metanol CH3OH dibutuhkan sebagai bahan baku di industri petrokimia untuk memproduksi formaldehida, klorometana, amina asetat dan juga sebagai alternatif energi baru yang ramah lingkungan. Penelitian ini bertujuan untuk mendapatkan pengaruh katalis CuO/ZnO/Al2O3 dan pengaruh temperatur umpan dalam bentuk konversi CO2, selektivitas CH3OH, dan yield CH3OH. Preparasi katalis CuO/ZnO/Al2O3 dilakukan dengan metode kopresipitasi menghasilkan persentase rasio komposisi logam Cu-Zn-Al yaitu 66,7: 27,4: 4,29 dan luas permukaan katalis sebesar 98,3411 m2/g. Komposisi perbadingan gas umpan H2 : CO2 yaitu sebesar 3 : 1. Reaktor unggun tetap dengan diameter dalam 1,5 cm; panjang 19 cm bed katalis 5 cm, dan furnace 5 cm. Reaksi dilakukan pada tekanan 30 bar dan laju alir dijaga konstan. Variasi yang dilakukan dalam reaksi yaitu variasi temperatur umpan pada 220, 250, 280 oC. Didapatkan nilai konversi CO2 yang tertinggi terjadi pada saat temperatur umpan 250 oC dengan waktu reaksi hingga mencapai kondisi stabil yaitu selama 240 menit. Sehingga kondisi reaksi pada temperatur 250 oC dikatakan sebagai kondisi optimal dengan didapatkan nilai konversi CO2 sebesar 21,8, selektivitas CH3OH sebesar 82,76, dan yield CH3OH sebesar 18,04.
The catalytic hydrogenation of CO2 to CH3OH has a bright prospect along with high market demand. Methanol CH3OH is needed as raw material in the petrochemical industry to produce formaldehyde, chloromethane, amine acetate and also as an alternative new environmentally friendly energy. This study aims to obtain the effect of CuO ZnO Al2O3 catalyst and the influence of feed temperature in the form of CO2 conversion, CH3OH selectivity, and yield of CH3OH. Preparation of CuO ZnO Al2O3 catalysts by coprecipitation method resulted in percentage ratio of Cu Zn Al metal composition of 66,7 27,4 4,29 and catalyst surface area of catalyst 98,3411 m2 g. H2 CO2 gas ratio composition of 3 1. Fixed bed reactor with 1.5 cm inner diameter length of 19 cm bed catalyst 5 cm, and furnace 5 cm. The reaction is carried out at a pressure of 30 bar and the flow rate is kept constant. Variations made in the reaction are variation of feed temperature at 220, 250, 280 oC. The highest CO2 conversion value occurs when the 250 oC feed temperature with reaction time reaches a stable condition of 240 minutes. So that the reaction condition at 250 oC is said to be the optimal condition with a CO2 conversion value of 21.8, CH3OH selectivity of 82.76, and CH3OH yield of 18.04.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Piero Collins
Abstrak :
Tujuan dari penelitian ini adalah untuk mendapatkan model reaktor unggun diam 2D yang valid untuk sintesis dimetil eter melalui dehidrasi metanol, mendapatkan parameter kinetika melalui studi kinetik, serta mendapatkan pengaruh parameter proses dan geometri terhadap kinerja reaktor melalui studi sensitivitas. Metode penelitian ini terdiri dari penentuan geometri, penentuan model matematis, simulasi, dan analisis dan pembahasan Model matematis dikembangkan melalui persamaan neraca massa (celah unggun dan katalis), neraca momentum, dan neraca energi. Pada studi kinetik, reaktor dimodelkan berbentuk silinder dengan diameter 24 mm dan tinggi 600 mm. Hasil dari studi kinetik menghasilkan nilai energi aktivasi reaksi dehidrasi metanol sebesar 50,4 kJ/mol, nilai faktor eksponensial sebesar 1782 mol.m.s/kg2, nilai panas adsorpsi air sebesar -31,17 kJ/mol dan panas adsorpsi metanol sebesar -1,73 kJ/mol. Pada studi sensitivitas, reaktor memiliki dimensi 5 cm dan tinggi 3 m. Hasil dari studi sensitivitas penelitian ini menunjukan bahwa konversi metanol dan yield DME terbaik yang dihasilkan berada saat temperatur umpan 563 K, tekanan umpan 7,5 bar, laju alir gas 24 ml/h, panjang reaktor 5 m, dan diameter reaktor 5 cm. ......This study aimed to obtain a valid 2D stationary bed reactor model for the synthesis of dimethyl ether through methanol dehydration, obtain kinetic parameters through kinetic studies, and obtain the effect of process and geometry parameters on reactor performance through sensitivity studies. This research method consists of the determination of geometry, the determination of mathematical models, simulations, and analysis and discussion. Mathematical models are developed through mass balance equations (bed gap and catalyst), momentum balance, and energy balance. In the kinetic study, the reactor is modeled as a cylinder with a diameter of 24 mm and a height of 600 mm. The results of the kinetic study resulted in the activation energy value of the methanol dehydration reaction of 50.4 kJ/mol, the value of the exponential factor of 1782 mol.ms/kg2, the heat value of water adsorption of -31.17 kJ/mol and the heat of adsorption of methanol of -1, 73 kJ/mol. In the sensitivity study, the reactor has dimensions of 5 cm and a height of 3 m. The results of the sensitivity study of this study showed that the best methanol conversion and DME yields were at a feed temperature of 563 K, a feed pressure of 7.5 bar, a gas flow rate of 24 ml/h, a reactor length of 5 m, and a reactor diameter of 5 cm.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan Muzanni
Abstrak :
Green diesel adalah bahan bakar diesel alternatif yang dibuat dari hydrotreating trigliserida yang memiliki alkana rantai lurus C15-C18. Penelitian ini difokuskan pada studi kinetika reaktor trickle-bed untuk memproduksi green diesel melalui reaksi hydrotreating trigliserida, yang diwakili oleh triolein, dengan katalis NiMo/Al2O3. Model yang dibuat adalah model reaktor trickle-bed 2D axisymmetric dengan mempertimbangkan perpindahan massa di fasa gas, cair, dan padatan katalis. Model disimulasikan dengan COMSOL Multiphysics 5.4 dengan menyesuaikan hasil simulasi dengan data eksperimen. Reaktor yang dimodelkan berisi katalis berbentuk bola dengan ukuran 1 mm. Reaktor akan memiliki ukuran diameter 2,01 cm dan panjang 24 cm. Kondisi operasi reaktor akan memiliki suhu umpan 290-330 oC, tekanan 10 dan 15 bar. Nilai faktor pra-eksponensial untuk reaksi hydrotreating trigliserida, reaksi maju isomerisasi C18 (k10), reaksi mundur isomerisasi C18 (k11), reaksi cracking C17 (k12), dan reaksi cracking C18 (k13) berturut-turut adalah 2,9 x 10-37 1/detik, 3,45 x 1028 1/detik, 6,67 x 10-3 1/detik, dan 1,24 x 10-52 1/detik. Energi aktivasi yang didapatkan untuk k10, k11, k12, dan k13 berturut-turut adalah –340,3 kJ/mol, 340,3 kJ/mol, 17,1 kJ/mol, dan –515,3 kJ/mol. Hasil simulasi dan hasil laboratorium mendekati garis linier pada grafik paritas, menunjukkan bahwa hasil simulasi sudah sesuai dengan hasil laboratorium. ......Green diesel is an alternative diesel fuel made from hydrotreating triglycerides having straight chain alkanes C15-C18. This research is focused on the study of trickle-bed reactor kinetics to produce green diesel by hydrotreating triglycerides, represented by triolein, with NiMo/Al2O3 as catalyst. The model made is a 2D axisymmetric trickle-bed reactor model by considering mass transfer in the gas, liquid, and solid catalyst phases. The model was simulated with COMSOL Multiphysics 5.4 by adjusting the simulation results with experimental data. The modeled reactor contains a spherical catalyst with a size of 1 mm. The reactor will have a diameter of 2.01 cm and a length of 24 cm. The reactor operating conditions will have a feed temperature of 290-330 oC, pressures of 10 and 15 bar. The pre-exponential factor values for triglyceride hydrotreating reaction, forward C18 isomerization reaction (k10), C18 reverse isomerization reaction (k11), C17 cracking reaction (k12), and C18 cracking reaction (k13) were 2.9 x 10-37 1/sec, 3.45 x 1028 1/sec, 6.67 x 10-3 1/sec, and 1.24 x 10-52 1/sec , respectively. The activation energies obtained for k10, k11, k12, and k13 are –340.3 kJ/mol, 340.3 kJ/mol, 17.1 kJ/mol, and –515.3 kJ/mol, respectively. The simulation results and laboratory results are close to the linear line on the parity graph, indicating that the simulation results are in accordance with the laboratory results.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darmaji Setiawan
Abstrak :
Pemanfaatan kelapa sawit sebagai salah satu komoditas unggulan Indonesia harus dibarengi dengan peningkatan nilai jualnya. Hal ini dapat dilakukan salah satunya dengan cara pemanfaatan kelapa sawit sebagai sumber bahan bakar alternatif yaitu biodiesel (metil ester). Metil ester berbasis minyak kelapa sawit sudah banyak dikembangkan pada lingkup dunia maupun regional. Akan tetapi aplikasi bioteknologi belum dikembangkan terutama untuk skala produksi yang besar. Reaksi biokatalisis sintesis biodiesel dengan rute non alkohol menggunakan enzim lipase dalam skala penelitian telah menunjukkan potensi pengembangan bioteknologi dalam skala industri. Oleh karena itu dalam studi ini akan dilakukan analisa tekno-ekonomi produksi biodiesel secara biokatalisis melalui rute non alkohol dengan bahan baku minyak kelapa sawit (CPO). Teknologi produksi biodiesel yang dilakukan adalah reaksi interesterifikasi trigliserida dengan katalis Candida rugosa yang dilangsungkan pada reaktor unggun tetap. Hasil studi ini akan memberikan saran kelayakan pembangunan pabrik biodiesel ini di Indonesia secara ekonomi. ......Utilization of palm oil as one of the leading Indonesian commodities should be accompanied by increasing their salvage value. It can be done by use of palm oil as alternatif fuel that is biodiesel (methyl ester). Methyl ester-based Crude Palm Oil has been widely developed in the world and regional scope. However, biotechnology application in the production of methyl ester has not been developed especially for large scale production. Experiments of non alcohol route of synthesis biodiesel biocatalyst reaction using enzim lipase have been demonstrated the potential for technological development in industrial biotechnology. Therefore in this study will be carried out techno-economic analysis of non alcohol biodiesel production based Crude Palm Oil (CPO). Technology of biodiesel production is done triglyceride interesterification reaction catalyzed by Candida rugosa held in packed bed reactor. The result of this study will give advice if the construction of this biodiesel plant in Indonesia is economically feasible or not.
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51928
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2   >>