Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Doloksaribu, Immanuel Chandra Hasonangan
Abstrak :
ABSTRAK
Pada tugas akhir ini, saya menganalisa probabilitas outage dari teknologi full-duplex dengan menggunkan sistem MIMO (2x2) dengan memperhatikan faktor dari self-interference. Faktor self-interference pada tugas akhir ini diasumsikan telah ditekan dengan menggunakan active dan passive cancellation. Diasumsikan kanal yang dilalui sinyal antar 2 node merupakan kanal Rayleigh dan kanal yang dilalui sinyal interferensi merupakan kanal Rician. Selanjutnya, akan diperhatikan nilai dari probabilitas outage akibat dampak dari perubahan faktor K, 𝛾̅ɑ adalah SINR (Signal to Interference plus Noise Ratio), threshold rate (R) dan jumlah antena (N). Pada hasil perhitungan dengan nilai dari K = 35 dB atau lebih serta SINR = 70 dB dan R = 10 bps/Hz, probabilitas outage bernilai lebih dari 10-2 namun, dengan nilai SINR = 70 dB dan R = 10 bps/Hz, probabilitas outage bernilai lebih kecil dari 10-4 untuk nilai K = 15 dB atau kurang, maka didapat bahwa probabilitas outage meningkat jika nilai K meningkat. Selanjutnya, dengan nilai K = 10 dB didapat nilai dari probabilitas outage sebesar 10-4 ketika nilai SINR = 60 dB dan probabilitas outage sebesar 10-6 ketika nilai SINR = 70 dB, maka didapat probabilitas outage menurun jika nilai SINR meningkat. Hasil perhitungan lainnya dengan nilai K = 10 dB, didapat nilai dari probabilitas outage lebih dari 0,2 ketika nilai R = 6 bps/Hz dan probabilitas outage sebesar 0,8 ketika nilai R = 8 bps/Hz, didapatkan Probabilitas outage meningkat jika nilai R meningkat. Selanjutnya, dengan nilai K = 15 dB dan R = 20 bps/Hz, didapatkan nilai probabilitas outage sebesar 0,4, namun ketika nilai dari K = 15 dB dan R = 20 bps/Hz, nilai dari probabilitas outage dibawah 0,1, maka probabilitas outage menurun jika nilai N meningkat.
ABSTRACT
In this report, I analyze an outage probability in bidirectional nirkabel communication using full-duplex MIMO system with consider effect of self-interference. The self-interference in this report is mitigated by active and passive cancellation, yet there is still interference happens in this system, called residual interference. Assumed, transmit information signal (channel between node-1 and node-2) using Rayleigh fading channel and express interference signal stream using Rician fading channel. I derive a closed-form solution of outage probability towards effect of Rician factor (K), γ̅ɑ is SINR (Signal to Interference plus Noise Ratio), threshold rate (R) and number of antenna (N). With SINR is 70 dB and R is 10 bps/Hz, value of outage probability is more than 10-2, yet with SINR is 70 dB and R is 10 bps/Hz, we get value of probability is below 10-2 for value of K is 15 dB or below, we obtain that value of outage probability increases when we increasing value of K. At value of K is 10 dB, we get outage probability is 10-4 when SINR is 60 dB and outage probability is 10-6 when SINR is 70 dB, from the result we conclude that for certain value of R, as SINR increases outage probability decreases for given K. Furthermore, at value of K is 10 dB, we get outage probability is more than 0.2 when R is 6 bps/Hz and outage probability is 0.8 when R is 8 bps/Hz. We get that as threshold rate increases outage probability increases for given SINR. Moreover, at value of K is 15 dB and R is 20 bps/Hz, we get outage probability is 0.4 but when value of K is 15 dB and R is 20 bps/Hz, we get outage probability is below 0.1. We obtain that increases number of antenna will decreases value of outage probability.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62971
UI - Skripsi Membership  Universitas Indonesia Library
cover
Djamhari Sirat
Abstrak :
The Hidden Markov Model (HMM) is a frequently used tool in scientific research for recognizing pattern. This study discusses signature recognition using HMM where the signature image is transmitted from the remote station to the headquarter office by wireless because the remote station was not provided by the original signature as a reference. Generally, the transmission of radio communication has been corrupted with Additive White Gaussian Noise (AWGN) over the Rayleigh fading channel. To reduce the number of bits in the bitstream, the signal prior to transmission was compressed by means of run-length encoding (RLE), also known as source coding. The signature image detected from the receiver was processed in the computer using the HMM. The successful rate of recognition was 0-36% without compression and 60-76%with compression.
Depok: Faculty of Engineering, Universitas Indonesia, 2011
UI-IJTECH 2:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Ahmad Ilmiawan
Abstrak :
Teknologi Full Duplex merupakan teknologi yang saat ini sedang berkembang karena mampu untuk meningkatkan transfer rate dan mendapatkan efisiensi spektral yang tinggi. Teknologi Full Duplex memungkinkan untuk menggunakan pita frekuensi yang sama untuk melakukan pengiriman sinyal informasi dan penerimaan sinyal informasi dalam waktu yang bersamaan, namun mode ini memiliki permasalahan yaitu, adanya self-interference antara antena pengirim dan penerima, yang mengakibatkan sinyal yang diterima pada antena penerima tidak hanya sinyal informasi dari sumber namun juga sinyal pengganggu yang berasal dari antena pengirim self-interference. Pada tugas akhir ini, saya menganalisa Probabilitas Sukses jaringan Full-Duplex dimana pada infrastruktur jaringan Full-Duplex disertakan relai. Relai disini berfungsi sebagai penguat sinyal, guna meminimalisir efek dari self-interference. Langkah awal penulis adalah memodelkan jaringan FullDuplex Relaying beserta dengan parameter-parameter yang mempengaruhinya. Kemudian memformulakan parameter tersebut ke dalam persamaan matematis menggunakan teknik Rayleigh Fading Assumption. Hasil dari formula ini kemudian dijabarkan ke dalam bentuk Probabilitas Sukses dengan batasan parameter pembanding threshold ? , noise n , dan jarak R . Langkah berikutnya memverifikasikan formula ke dalam simulasi Monte Carlo. Perbedaan metode Probabilitas Sukses dengan Monte Carlo terletak pada 2 hal, yang pertama pada Monte Carlo parameter random akan diubah-ubah nilainya, dalam hal ini adalah noise. Perbedaan kedua pada metode Monte Carlo dilakukan pengulangan simulasi, hal ini mengakibatkan grafik yang dihasilkan lebih presisi dibandingkan metode Probabilitas Sukses biasa. Dalam skripsi ini, penulis mensimulasikan metode Monte Carlo dengan pengulangan simulasi sebanyak 5000 kali. Hasilnya, penulis mendapatkan grafik probabilitas sukses dengan pola eksponensial, sesuai dengan persamaan matematis. Dimana probabilitas maksimum jaringan relai full-duple x nirkabel sebesar 0,7 pada saat threshold atau ? bernilai 0 dB. ......Full Duplex technology is a technology that is currently being developed for being able to increase the transfer rate and obtain high spectral efficiency. Full Duplex allows to use the same frequency band to perform signal transmission information and reception information signal at the same time, but this mode has a problem, namely, the self interference between the transmitting antenna and receiver, resulting in the received signal at the receiving antenna is not only signals from a source of information but also a bully signal originating from the transmitting antenna selfinterference. In this report, I analyze success probability of Full Duplex network where the network infrastructure Full Duplex included relai. Relai here serves as a signal amplifier, in order to minimize the effects of self interference. The initial step is to model the Full Duplex Relaying network along with the parameters that influence it. Then formulated these parameters into a mathematical equation using the Rayleigh Fading Assumption technique. The results of this formula are further described in the form Probability of Success with restrictions comparator threshold parameters, noise n, and distance R . The next step is describe the formula into Monte Carlo simulation. Difference methods between Monte Carlo and probability of success lies in two things, the first is in Monte Carlo random parameter value will be changed, in this case the noise. The second difference in the method of Monte Carlo simulation is there are repetition, this has resulted in the resulting graph is more precise than the usual method of Success Probability. In this report, the authors simulate Monte Carlo method to simulate as much as 5000 times repetition.The result is, author get a success probability graph with exponential line, verified the formula. Where maximum success probability value of full duplex relaying wireless network is 0,7 when threshold or 0 dB.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S66072
UI - Skripsi Membership  Universitas Indonesia Library
cover
Leni Nur Hidayati
Abstrak :
Kebutuhan layanan multimedia berkembang dengan pesat melalui kanal radio (wireless channels) mendorong terbentuknya sistem transmisi citra nirkabel (wireless image transmission systems) baik pada kanal AWGN maupun kanal fading. Aplikasi dari transmisi citra melalui kanal nirkabel sangat menarik untuk diamati karena hal ini memerlukan desain yang seperti dari penggunaan pengkodean (coding) untuk kompresi dari citra dikarenakan keterbatasan sumber daya seperti bandwidth dan daya energi untuk transmisi. Untuk mengurangi ukuran data yang ditransmisikan digunakan teknik kompresi citra, salah satunya yaitu Run Length Encoding (RLE). Saat ini, pentingnya identifikasi biometric mengalami peningkatan seiring dengan adanya perdagangan elektronik (electronic commerce). Identifikasi tanda tangan dikembangkan secara luas sebagai salah satu metoda identifikasi biometric. Salah satu metoda identifikasi untuk tanda tangan digunakan Hidden Markov Model (HMM). Dalam tesis ini dilakukan pengenalan citra tanda tangan yang telah ditransmisikan pada kanal fading Rayleigh dengan menggunakan metode Hidden Markov Model (HMM). Sebelum ditransmisikan, citra tanda tangan dikompresi terlebih dahulu dengan menggunakan RLE. Citra tanda tangan ditransmisikan beberapa kali untuk disimpan pada basis data sedangkan pada proses pengenalan citra tanda tangan hanya ditransmisikan sekali saja untuk dijadikan sebagai citra uji. Pada tahap pembentukkan basis data, citra tanda tangan diubah menjadi vektor sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan sebagai codebook di dalam basis data. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan urutan observasi atau codeword dari setiap sample citra tanda tangan. Dengan menggunakan codebook berukuran 32, 64 dan 128 bit dengan jumlah training 10 dan 20 kali, diperoleh tingkat akurasi pengenalan citra tanda tangan pada kanal fading Rayleigh dengan tidak menggunakan kompresi RLE yaitu antara 0 sampai 36 % sedangkan yang menggunakan kompresi RLE akurasinya sebesar 60 % sampai 76 %. Rasio kompresi citra tanda tangan didapatkan antara 97,78% sampai 98,42 %. Probabilitas kesalahan simbol citra tanda tangan yang tidak menggunakan RLE yaitu 0,9749 sampai dengan 0,9762 sedangkan yang menggunakan kompresi RLE sebesar 0,6785 sampai 0,9691. ......The need of multimedia services growth increasingly over wireless channels that encourage wireless image transmission systems both through AWGN or fading channel. Application from image transmission over wireless channels are very interesting to be observation because its need the good design from compression coding because the limited resource such as bandwidth and energy resource for transmission. To reduce transmission data size, image compression technique is used, such as Run Length Encoding (RLE). Recently application of biometric identification increases because of electronic commerce. Signature identification was extended as once method of biometric identification. Once of signature identification method is Hidden Markov Model (HMM). In this research recognition of transmitted signature on Rayleigh fading channels used HMM. Before transmission, signature image compressed with RLE. Signature image transmitted more once times then it?s saved at data base but at the recognition process signature image only transmitted once time as tested image. In the process of making data base, signature image changed to be vector as sample point and the nearest points will be quantized as centroid or codeword. The collection of codeword will be stored as codebook in data base. Recognition is performed by comparing the value log of probability HMM which computed base on sequences of observation or codeword each sample from signature image. Base on using codebook 32, 64 and 128 bit with 10 and 20 training, can reach performance of signature image recognition at Rayleigh fading channel if not using RLE compression is 0 % ? 36 % and if using RLE compression is 60 % - 76 % . Compression rate of signature image is 97,78% - 98,42%. Probability of symbol error of signature image which not using RLE compression is 0,9749 ? 0,9762 but if using compression RLE is 0,6785 ? 0,9691.
Depok: Fakultas Teknik Universitas Indonesia, 2010
T40947
UI - Tesis Open  Universitas Indonesia Library
cover
Speidel, Joachim
Abstrak :
This book offers students, scientists and engineers an extensive introduction to the theoretical fundamentals of digital communications, covering single input single output (SISO), multiple input multiple output (MIMO), and time-variant systems. Further, the main content is supplemented by a wealth of representative examples and computer simulations. The book is divided into three parts, the first of which addresses the principles of wire-line and wireless digital transmission over SISO links. Digital modulation, intersymbol interference, and various detection methods are discussed; models for realistic time-variant, wireless channels are introduced; and the equivalent time-variant baseband system model is derived. Since not all readers may be familiar with this topic, Part II is devoted to the theory of linear time-variant systems. The generalized convolution is derived and readers are introduced to impulse response, the delay spread function, and system functions in the frequency domain. In addition, randomly changing systems are discussed. In turn, Part III deals with MIMO systems. It describes MIMO channel models with and without spatial correlation, including the Kronecker model. Both linear and nonlinear MIMO receivers are investigated. The question of how many bits per channel use can be transmitted is answered and maximizing channel capacity is addressed. Principles of space–time coding are outlined in order to improve transmission quality and increase data rates. In closing, the book describes multi-user MIMO schemes, which reduce interference when multiple users in the same area transmit their signals in the same time slots and frequency bands.
Switzerland: Springer, 2019
e20502744
eBooks  Universitas Indonesia Library