Ditemukan 2 dokumen yang sesuai dengan query
Kukuh Lolana
"
ABSTRACTPelayanan publik berperan penting untuk meningkatkan kesejahteraan masyarakat. Kepolisian Republik Indonesia merupakan lembaga pelayanan publik yang memiliki peranan penting di masyarakat. Namun, penilaian kinerja Polri yang berhubungan langsung dengan masyarakat masih rendah dan perlu ditingkatkan. Peningkatan kinerja layanan Polri dilakukan dengan memahami aduan dan masukan dari masyarakat. Aduan merupakan informasi penting untuk penyedia layanan untuk mengetahui arah perbaikan dan pengembangan layanan ke depannya. Perkembangan teknologi membuat sistem penyampaian pengaduan dapat disampaikan secara online sehingga lebih mudah. Kemudahan ini sejalan dengan banyaknya jumlah aduan yang disampaikan masyarakat kepada Polri. Aduan masyarakat merupakan data teks yang tidak terstruktur dengan penggunaan kosa kata yang bervariasi. Maka dari itu, pendekatan text miningpenting untuk dilakukan. Penelitian ini bertujuan untuk mengklasifikasi dan melakukan clustering dari aduan masyarakat kepada Polri untuk topik permasalahan yang sering disampaikan masyarakat. Untuk klasifikasi, algoritme yang digunakan adalah Support Vector Machine SVM dan Random Forest Classifier RFC karena kedua algoritme bekerja dengan baik untuk mengklasifikasi data teks dalam jumlah besar. Hasilnya algoritme RFC bekerja lebih baik pada kasus ini dengan akurasi 72 . Untuk clustering, algoritme yang digunakan adalah Self-Organizing Maps. Hasil penelitian menunjukkan aduan terbanyak masyarakat terdapat di Kelas Pelayanan Buruk dengan topik yang sering dibahas berkaitan dengan satuan kerja Korps Lalu-Lintas Polri.
ABSTRACTPublic services take a major role to improve the welfare of society. Indonesia National Police is one of public service institution which have an important role. Unfortunately, assessment of Police performance related to the public service quality is still low. Police needs to improvetheirservice quality. For improving the performance, by analyzing inputs and complaints from public. Complaint is an valuable information for service provider in order to know the service improvement and development in the future. Technology advances make the online complaint handling system easy to access. This is allign with the number of public complaints for Police. Public complaints is unstructured text data with varying vocabulary. Hence, this research is using text mining approach. This research aims to classify and cluster the public complaints to Indonesia National Police to get the specific topic of the complaint. Support Vector Machine and Random Forest Classification RFC algorithms are used for classification. RFC works better on this research with 72 accuracy. Self Organizing Maps algorithm is used for clustering. The result is the highest public complaints are in poor service quality class with topics related to National Police rsquo s Traffic Corps."
2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Aryo Hastungkoro Harimurti Mukarta
"Dalam melakukan klaim subrogasi, perusahaan penjaminan kredit sering mengalami kendala di mana pihak yang dijamin tidak melunasi pinjamannya sesuai kesepakatan. Hal ini membuat perusahaan penjaminan kredit mengklasifikasikan pihak terjamin yang berpotensi untuk melunasi pinjaman kreditnya, dan pihak terjamin yang tidak berpotensi untuk melunasi pinjaman kreditnya. Penelitian ini mengevaluasi prediksi potensi klaim subrogasi pada penjaminan kredit menggunakan berbagai model pembelajaran mesin berdasarkan data dunia nyata dari perusahaan penjaminan kredit besar di Indonesia. Eksperimen menggunakan Logistic Regression, sebuah metode prediksi berbasis persamaan linier, Penalized Logistic Regression, bentuk dari Logistic Regression yang koefisien-koefisiennya diberikan penalti, dan Random Forest Classifier, sebuah metode berbasis ensemble learning. Model diuji menggunakan Hold-out Validation dan data prediksi dibandingkan dengan data uji untuk false positive dan false negative. Hasil penelitian menunjukkan bahwa Random Forest Classifier memberikan hasil yang lebih baik, menunjukkan kinerja rata-rata yang lebih baik dibandingkan dengan Logistic Regression dan Penalized Logistic Regression . Temuan studi ini dapat digunakan oleh analis klaim dan subrogasi baik dari perusahaan penjaminan kredit maupun peneliti independen dalam menilai kekuatan dan kelemahan masing-masing model dan untuk menyusun aturan keputusan yang efektif secara empiris untuk mengevaluasi kebijakan subrogasi.
In making subrogation claims, credit guarantee companies often encounter problems where the guaranteed party does not pay off their loan according to the agreement. This makes credit guarantee companies classify those who have the potential to pay off their credit loans, or those that are not potential to pay off their credit loans. This study evaluates the prediction of potential subrogation claims in credit guarantees using various machine learning models based on real-world data from a large credit guarantee company in Indonesia. The experiment used Logistic Regression, a linear equation-based prediction method, Penalized Logistic Regression, a form of Logistic Regression whose coefficients are penalized, and the Random Forest Classifier, an ensemble learning-based method. The model was tested using Hold-out Validation and prediction dataset were compared to test dataset for false positives and false negatives. The results showed that the Random Forest Classifier gave better results, indicating a better average performance compared to Logistic Regression and Penalized Logistic Regression. The findings of this study can be used by claims and subrogation analysts from both credit guarantee companies and independent researchers in assessing the strengths and weaknesses of each model and to construct empirically effective decision rules for evaluating subrogation policies."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library