Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Andre Jatmiko Wijaya
Abstrak :
[ABSTRAK
Perkembangan teknologi yang semakin cepat menjadikan teknologi penting di berbagai sektor kehidupan, khususnya di bidang industri. Perkembangan zaman membuat tingkat permintaan akan suatu produk menjadi berubah sehingga industri harus meningkatkan kinerja produksinya. Teknologi yang digunakan merupakan teknologi automasi di mana di dalamnya terdapat pengendali. Pengendali yang digunakan oleh kebanyakan industri merupakan pengendali konvensional karena pengendali konvensional relatif murah dan efektif. Akan tetapi pengendali konvensional ini tidak dapat digunakan untuk sistem yang kompleks dan non linear. Pengendali konvensional, misalnya pengendali PID, tidak dapat mengatasi terjadinya perubahan karakteristik dari sistem secara otomatis. Untuk itu diperlukan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis dan dapat beradaptasi dengan dinamika perubahan sistem yang diakibatkan adanya perubahan kondisi lingkungan kerja. Sistem pengendali yang dianggap mampu untuk beradaptasi dengan perubahan karakteristik dari sistem secara otomatis adalah pengendali berbasis Neural Network. Dalam percobaan ini parameter yang digunakan untuk menentukan pengendali yang baik adalah adaptivity serta kecepatan respon pengendali. Pada hasil simulasi ini didapatkan bahwa pengendali berbasis Neural Network dengan metode Radial Basis Function Neural Network (RBFNN) lebih baik dan lebih cepat dalam menanggapi perubahan karakteristik sistem dibandingkan dengan pengendali Neural Network berbasis backpropagation. ABSTRACT
Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity. Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can?t be used for complex and non-linear system. For example, PID controller, it can?t handle the changes of system?s characteristic automatically. PID controller has to be reset to handle the new system?s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system?s characteristic automatically and adapt with the dynamics of system?s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system?s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response. The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system?s characteristic than Backpropagation based Neural Network controller.;Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity. Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can?t be used for complex and non-linear system. For example, PID controller, it can?t handle the changes of system?s characteristic automatically. PID controller has to be reset to handle the new system?s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system?s characteristic automatically and adapt with the dynamics of system?s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system?s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response. The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system?s characteristic than Backpropagation based Neural Network controller., Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity. Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can’t be used for complex and non-linear system. For example, PID controller, it can’t handle the changes of system’s characteristic automatically. PID controller has to be reset to handle the new system’s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system’s characteristic automatically and adapt with the dynamics of system’s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system’s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response. The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system’s characteristic than Backpropagation based Neural Network controller.]
Fakultas Teknik Universitas Indonesia, 2015
S61919
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadel Muhammad
Abstrak :

Demam Berdarah Dengue (DBD) adalah salah satu masalah kesehatan masyarakat yang utama di Indonesia. Jumlah kasus DBD semakin bertambah seiring dengan laju pertumbuhan mobilitas dan populasi manusia. Radial basis function neural network (RBFNN) pada tugas akhir ini diimplementasikan untuk prediksi jumlah insiden mingguan DBD di DKI Jakarta. RBFNN adalah salah satu feed forward neural neworks yang hanya memiliki satu lapisan tersembunyi. Lapisan tersembunyi pada RBFNN dikonstruksi oleh sebuah fungsi aktivasi. K-means clustering digunakan untuk menunjang peforma dari RBFNN, yaitu untuk menentukan pusat dan lebar dari fungsi aktivasi yang digunakan. Performa dari RBFNN dilihat dari RMSE yang dihasilkan pada data training dan data testing. Dari implementasi yang dilakukan, dapat diperoleh bahwa pemilihan struktur atau model RBFNN sangat berpengaruh terhadap hasil prediksi yang diperoleh. Pada tugas akhir ini, RBFNN mampu memprediksi insiden mingguan DBD di DKI Jakarta dengan cukup baik tetapi RBFNN belum dapat menjakau data yang melonjak tinggi pada data testing.


Dengue Hemorrhagic Fever (DHF) is one of the main public health problems in Indonesia. The number of DHF cases and the spread of this disease is increasing along with mobility and population density. Radial basis function neural network (RBFNN) in this final project is implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN in this final project was implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN is a feed forward neural network model that has a single hidden layer. The hidden layer of RBFNN is constructed by an activation function. K-means clustering algorithm is used to improve the performance of RBFNN to determine the center and width of the activation function. The performance of RBFNN can be seen from the RMSE generated in the training data and testing data. From the implementation, it can be obtained that the choice of RBFNN structure or model is very influential on the predicted results obtained. In this final project, RBFNN is able to predict the weekly incidence of DHF in DKI Jakarta quite well but RBFNN has not been able to predict well the data that soared in the testing data.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ira Salsabila Rohadatul ‘Aisy
Abstrak :
Mata kering merupakan penyakit yang beredar pada masyarakat umum. Mata kering menyebabkan rasa tidak nyaman dan mengganggu aktivitas sehari-hari. Faktanya, lebih dari 85% penderita penyakit mata kering disebabkan kerusakan kelenjar meibom (meibomian gland dysfunction, MGD). Akibatnya mata yang memilki MGD menjadi kering karena intensitas evaporasi air mata meningkat. Untuk mendeteksi tingkat MGD dilakukanmeibography. Dari hasil meibography, klinisi (dokter spesialis mata) menilai tingkat MGD yang disebut meiboscore. Namun realitanya, penilaian meiboscore masih sangat subjektif antar para klinisi. Alat yang digunakan juga mahal dan tidak seluruh klinik mata memiliki alat tersebut. Oleh karena itu pada tugas akhir ini dilakukan deteksi tingkat kerusakan kelenjar meibom dengan pendekatan faktor-faktor potensi MGD dan machine learning. Metode machine learning yang digunakan dalam tugas akhir ini ini adalah radial basis function neural network (RBFNN). Metode machine learning dalam studi ini dilakukan Teknik SMOTE terelebih dahulu untuk menyeimbangkan jumlah data antar kelas, lalu data dibagi menjadi data training dan data testing dengan rasio sebesar 90%: 10%, 80%: 20%, 70%: 30%, dan 60%: 40% . Selain itu dilakukan pengurangan fitur-fitur yang kurang relevan menggunakan seleksi fitur Chi square. Hasil evaluasi metode RBFNN memperoleh nilai rata-rata akurasi, presisi, recall dan f1-score terbaik dicapai menggunakan data testing 20% dengan masing-masing mencapai nilai 96%, 95%, 100%, dan 95% secara berurut ......Dry eye is a common disease happened among the public. Dry eye causes discomfort and distracts daily activities. More than 85% dry eye suffers are caused by meibomian gland dysfunction (MGD). As a result, eyes with MGD becomes dry due to high tear evaporation intensity. Detecting MGD can be done by meibography. The MGD level is scored by clinicians which is called meiboscore. However, scoring the meiboscore is still very subjective among the clinicians. The tool that is used are expensive and not all eye clinics have this tool. Therefore, this study aims to detect the MGD level with the approach of MGD potential factors and machine learning. In this study radial basis function neural network (RBFNN) is used. The machine learning method performs SMOTE technique to balance the amount of data in each class, then all data is divided into training data and testing data by90%: 10%, 80%: 20%, 70%: 30%, and 60%: 40% respectively. Moreover, irrelevant features are reduced to optimize using feature selection, Chi Square. To reduce the features that are less relevant, Chi square feature selection is performed. RBFNN method obtained the best average accuracy 96%, average precision 95%, average recall 100%, and average f1-score 95% using the 20% data testing.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library