Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Mustapha, Khameel B.
"This book addresses the static and dynamic analysis of linear elastic size-dependent structures based on the modified couple stress theory. It focuses on establishing the governing equations of the size-dependent structures, deriving the associated finite element models, and implementing those models using the R programming language. The implemented functions are employed to develop a special R package (equivalent to a MATLAB toolbox) called microfiniteR for this book.
In each chapter, the governing equations are formulated using the variational method, and the behaviour of the structures is examined on the basis of their load-deformation characteristics (in the case of static analyses) and by evaluating their eigenvalues (in the case of dynamics and buckling problems). The first chapter introduces readers to the R programming language, beginning with the resources needed to make use of the language and ending with a list of recommended texts. The remaining chapters cover the requisite linear elastic theory and highlight the implemented R functions. Each chapter concludes with a brief summary and relevant references. "
Singapore: Springer Nature, 2019
e20509909
eBooks  Universitas Indonesia Library
cover
Steele, Brian
"This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses.
This book has three parts:
(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.
(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.
(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials.
This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners."
Switzerland: Springer International Publishing, 2016
e20510037
eBooks  Universitas Indonesia Library
cover
Muhammad Candraditya Luki Pradipta
"Minyak merupakan kebutuhan bahan bakar yang utama untuk menunjang kehidupan manusia dalam banyak aspek termasuk menggerakkan roda perekonomian. Kegiatan eksplorasi minyak banyak melibatkan jaringan perpipaan sebagai tempat mengalirkan atau memindahkan fluida. Oleh karena itu kehandalan sistem perpipaan sangat diperlukan untuk mencegah terjadinya kegagalan pada sistem perpipaan. Kegagalan pada sistem perpipaan terjadi akibat adanya interaksi antara logam pipa dengan lingkungannya yang akan mengakibatkan terjadinya korosi. Untuk mengantisipasi terjadinya korosi, dibutuhkan sistem inspeksi yang optimal sehingga mampu mencegah terjadinya korosi serta dapat meningkatkan efektifitas inspeksi. Risk Based Inspection (RBI) merupakan salah satu metode untuk menentukan sistem inspeksi secara optimal dengan menggunakan pendekatan risiko. Dalam pendekatan penghitungan risiko, simulasi Monte Carlo dapat digunakan untuk mendekati nilai risiko aktual pada kondisi lapangan dengan jumlah sampel yang sedikit. Metode simulasi Monte Carlo merupakan bentuk simulasi probabilistik dimana suatu solusi dari suatu masalah diberikan berdasarkan proses randomisasi (acak). Unsur pokok yang diperlukan dalam simulasi Monte Carlo adalah random number generator. Pada penelitian ini, perhitungan keandalan dilakukan dengan menggunakan simulasi Monte Carlo menggunakan bantuan perangkat lunak RStudio® yang akan dibandingkan hasil perhitungannya dengan menggunakan Graphical User Interface (GUI) berbasis bahasa pemrograman R. Tujuan akhir dari penelitan ini adalah untuk menciptakan Graphical User Interface (GUI) berbasis bahasa pemrograman R yang ditargetkan mampu mempermudah  user melakukan kalkulasi risiko dengan menggunakan simulasi Monte Carlo pada metode Risk Based Inspection
Oil is the main fuel requirement to support human life in many aspects including propelling the economy. Many oil exploration activities involve pipelines as a place to drain or move fluid. Therefore, the reliability of the piping system is needed to prevent failures in the piping system. Failure in the piping system occurs due to the interaction between the metal pipe and its environment which will result a corrosion. To anticipate the occurrence of corrosion, an optimal inspection system is needed so that it can prevent corrosion and increase the effectiveness of inspections. Risk Based Inspection (RBI) is one of the methods to determine the inspection system optimally by using a risk management approach. In this approach, Monte Carlo simulations can be used to approach the actual risk value in field conditions with a small number of samples. Monte Carlo simulation method is a form of probabilistic simulation where a solution of a problem is given based on a randomization process. The basic element needed in a Monte Carlo simulation is a random number generator. In this study, the reliability calculation is done using Monte Carlo simulation using the help of RStudio® software which will be compared to the results of calculations using the Graphical User Interface (GUI) based on the R programming. The final purpose of this research is to create a Graphical User Interface (GUI) based on the R programming language that is targeted to be able to facilitate users in calculating risk by using Monte Carlo simulations on the Risk Based Inspection method."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library