Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Edo Krisna Dewandono
"ABSTRACT
Sel tumor adalah sel yang terbentuk akibat kegagalan beberapa protein dalam mengatur siklus sel. Protein TP53 berperan penting dalam mengatur siklus sel, khususnya dalam menekan perkembangan sel tumor. Perubahan pada gen TP53 ditemukan dalam lebih dari setengah kasus tumor pada manusia. Protein lain yang berhubungan dengan protein TP53 juga ditemukan terlibat dalam proses pembentukan kanker. Analisis interaksi protein TP53 dengan melakukan clustering jaringan interaksi protein (PPI) TP53 adalah hal penting dalam membantu mengatasi sel tumor. Jaringan PPI dinyatakan sebagai graf dengan protein dan interaksinya masing-masing sebagai simpul dan busur pada graf. Spectral clustering adalah metode graph clustering yang menggunakan eigenvector dari matriks Laplacian.

ABSTRACT
Fuzzy random walk adalah metode fuzzy clustering yang menggunakan probabilitas transisi dari random walk pada data. Dua metode tersebut akan digabungkan dan diimplementasikan pada penelitian ini. Menggunakan data PPI protein TP53 dari STRING database, didapat gabungan kedua metode tersebut mampu menghasilkan cluster yang fuzzy dan robust di mana setiap cluster dapat menjelaskan bagian tertentu dari fungsi protein TP53. Tumor cell is formed as a result of malfunctioning of some proteins that regulates the cell cycle. TP53 protein plays an important role in managing cell cycle, especially in tumor cell suppression. An alteration of TP53 gene is found in more than half cases of human tumor. Moreover, TP53-related proteins are also found involved in the carcinogenesis process. Therefore, it is important to analyze the interactions of TP53 protein by clustering protein-protein interactions (PPI) network of TP53. PPI networks are usually represented as a graph network with proteins and interactions as vertices and edges respectively. Spectral Clustering is a graph clustering algorithm based on eigenvector of the graph Laplacian. Fuzzy Random Walk is a fuzzy clustering method based on transition probability from a random walk on a dataset. In this paper, we combine both Spectral Clustering and Fuzzy Random Walk. Using PPI datasets of TP53 obtained from the STRING database, we found the combined algorithm is proven to produce both robust and fuzzy clusters with each cluster explains one of TP53 proteins functionality."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tesdiq Prigel Kaloka
"ABSTRAK
Protein merupakan bagian penting dari organisme dan memiliki fungsi yang berbeda. Fungsi dan sifat interaksi protein dapat diketahui dengan mengelompokkan protein-protein yang saling berinteraksi. Objek penelitian ini adalah interaksi antara protein HIV-1 dan manusia. Biclustering merupakan metode yang dapat digunakan untuk menyelesaikan permasalahan interaksi protein. Interaksi dibagi menjadi dua, yaitu interaksi positif dan negatif, selanjutnya diubah menjadi graf bipartit dengan simpul merupakan protein HIV-1 dan protein manusia, sedangkan busur merupakan jenis interaksi yang terjadi. Algoritma POLS merupakan algoritma biclustering yang menggunakan pendekatan teori graf. Hasil bicluster dianalisis menggunakan Gene Ontology (GO) untuk memperoleh fungsi protein pada satu bicluster. Proses terakhir adalah prediksi interaksi protein berdasarkan analisis fungsi-fungsi protein. Metode yang digunakan adalah Support Vector Machine (SVM) karena SVM merupakan metode prediksi machine learning yang robust. Berdasarkan hasil penelitian, dataset interaksi positif terdapat 297 bicluster dengan bicluster terbanyak berukuran 2 X 2 dan bicluster terbesar berukuran 7 X 7. Dataset interaksi negatif diperoleh 203 bicluster dengan 110 bicluster berukuran 2 X 2 dan satu bicluster berukuran 7 X 7. Berdasarkan hasil analisis GO, terdapat protein dalam satu bicluster yang belum diketahui fungsinya. Akurasi model prediksi untuk interaksi positif = 92% dan interaksi negatif = 88%.

ABSTRACT
Protein is an important part of the organism. The function of protein can be known by grouping the interact proteins. This research discusses the interaction between HIV-1 and human protein. Biclustering is a method to solve protein interaction problem. The interaction is divided into two types, called positive and negative interactions The interaction is transformed into a bipartite graph with vertices are HIV-1 and human protein, while the edges are the interaction. POLS algorithm is a biclustering method based on graph theory. The result of a bicluster is analyzed using Gene Ontology (GO). The last process is the prediction of protein interactions based on analysis of GO. We used Support Vector Machine (SVM) because SVM is a robust machine learning method for perdiction. Based on the results, we get 297 biclusters, with 171 biclusters sized 2 X 2 and the largest bicluster sized 7 X 7 for the positive interactions. For the negative interaction, we get 203 biclusters, with 110 biclusters sized 2 X 2 and the largest bicluster sized 7 X 7. Based on GO analysis there were an unknown function in a bicluster. Accuracy of prediction models for positive and negative interaction are 92% and 88% respectively."
2019
T54139
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohamad Irvan Septiar Musti
"ABSTRAK
HIV Human Immunodeficiency Virus adalah sebuah jenis retrovirus obligat intraseluler yang menyerang sistem kekebalan tubuh manusia. Virus ini menyerang dengan cara melakukan interaksi antara protein virus dengan protein manusia. Penelitian ini menggunakan data berupa barisan asam amino dari protein yang akan diubah fiturnya menggunakan metode global encoding. Hasil ekstraksi fitur tersebut kemudian akan digunakan sebagai masukan untuk metode rotation forest guna memprediksi interaksi protein HIV dengan manusia. Selain itu pula, penelitian ini juga membandingkan performa metode rotation forest yang menggunakan Principal Component Analysis RF PCA dengan rotation forest yang menggunakan Independent Principal Component Analysis RF IPCA sebagai metode transformasi peubah bebas dalam metode tersebut. Hasil dari penelitian ini menunjukkan bahwa RF PCA memperoleh hasil performa tertinggi dalam memprediksi interaksi protein HIV dengan protein manusia, yaitu dengan nilai akurasi sebesar 79,50 , sensitivitas 79,91 , spesifisitas 79,07 dan presisi sebesar 79,77 . Sementara itu, metode RF IPCA memperoleh hasil performa tertinggi yaitu dengan nilai akurasi sebesar 77,20 , sensitivitas 76,65 , spesifisitas 77,81 , dan presisi sebesar 79,40 . Selain itu pula, dalam penelitian ini ditemukan sebanyak 2.619 protein manusia yang terprediksi berinteraksi dengan protein HIV melalui model terbaik RF PCA , dan juga ditemukan sebanyak 3.071 protein manusia yang terprediksi berinteraksi dengan protein HIV melalui model terbaik RF IPCA dari total sebanyak 7.678 protein manusia yang diteliti.

ABSTRACT
HIV Human Immunodeficiency Virus is a type of retrovirus obligate intracellular that attacks the human body 39 s immune system. This virus attacks by doing interaction between virus and human proteins. This research uses data of amino acids sequence from protein that the feature will be extracted using Global Encoding. The result of feature extraction then would be used as an input for Rotation Forest in order to predict interaction between HIV and human proteins. In addition, this research also compares the performance of Rotation Forest that using Principal Component Analysis RF PCA with Independent Principal Component Analysis RF IPCA as a method of transformation in that method. The result shows that RF PCA produced highest performance in classifying protein interactions between HIV and human, with accuracy value of 79,50 , 79,91 sensitivity, 79,07 specificity and 79,77 precision. While the RF IPCA produced highest performance with 77,20 accuracy, 76,65 sensitivity, 77,81 specificity, and 79,40 precision. In addition, there are 2.619 human protein which is predicted has an interaction with HIV protein through RF PCA best model, and there are 3.071 human protein which is predicted has an interaction with HIV protein through RF IPCA best model from the total of 7.678 human protein. All of that can be found in this research."
2018
T49480
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Syamsuddin Wisnubroto
"ABSTRAK
Protein memiliki peranan yang sangat penting dalam kehidupan. Setiap protein
berinteraksi dengan protein-protein lain, DNA, dan molekul-molekul lainnya, sehingga
terbentuklah jaringan interaksi protein yang berukuran sangat besar. Untuk memudahkan
dalam menganalisisnya, diperlukan metode clustering. Algoritma Soft Regularized
Markov Clustering (SR-MCL) merupakan pengembangan metode clustering yang
mengurangi kelemahan dari Regularized Markov Clustering dan Markov Clustering.
Namun, SR-MCL masih memiliki kelemahan yaitu parameter inflasi yang selalu
dimasukkan secara manual oleh peneliti. Penelitian ini, SR-MCL digabung dengan
Algoritma Firefly yang selanjutnya disebut Firefly Soft Regularized Markov Clustering,
dimana posisi setiap firefly menggantikan parameter inflasi. Posisi firefly akan terus
diperbaharui dan proses clustering akan terus dilakukan sampai memperoleh global chaos
kurang dari threshold. FSR-MCL akan diterapkan secara paralel menggunakan OpenMP,
yaitu setiap thread menjalankan SR-MCL dengan posisi setiap firefly yang berbeda.
Proses clustering data HIV-1 diperoleh sembilan protein sebagai pusat cluster yang
sangat berpengaruh dalam pembentukan dan penyebaran virus, yaitu TAT, REV, ENV,
GAG, POL, VPU, VPR, NEF, dan VIF, serta didapat parameter inflasi terbaiknya 8,0
dengan speed up 4,66 kali. Proses clustering data SC5314 diperoleh enam protein sebagai
pusat cluster yang merupakan protein penting dalam penyebarannya, yaitu HSP90,
CBK1, MED8, NOP1, CEK1, dan CDC4, serta didapat parameter inflasi terbaiknya 5,5
dengan speed up 3,01 kali.

ABSTRACT
Protein has a very important role in life. Each protein interacts with other proteins, DNA,
and other molecules, resulting in a very large protein-protein interaction. To make it easier
to analyze it, clustering method is needed. Soft Regularized Markov Clustering (SRMCL)
algorithm is a development of clustering method that reduces the weakness of
Regularized Markov Clustering and Markov Clustering. However, SR-MCL still has a
weakness that is the parameter of inflation that is always entered manually by researchers.
This study, SR-MCL combined with Firefly Algorithm, hereinafter called Firefly Soft
Regularized Markov Clustering, where the position of each firefly replace the parameters
of inflation. The firefly position will continue to be updated and the clustering process
will continue until the global chaos is less than the threshold. FSR-MCL will be applied
in parallel using OpenMP, ie each thread runs SR-MCL with the position of each different
firefly. The process of clustering the HIV-1 data obtained by nine proteins as the center
of the cluster is very influential in the formation and spread of the virus, namely TAT,
REV, ENV, GAG, POL, VPU, VPR, NEF, and VIF, and got the best inflation parameter
8.0 with speed up 4.66 times. SC5314 data clustering process obtained six proteins as the
center of the cluster which is an important protein in its spreading, namely HSP90, CBK1,
MED8, NOP1, CEK1, and CDC4, and got the best inflation parameter 5.5 with speed up
3.01 times."
2018
T49442
UI - Tesis Membership  Universitas Indonesia Library
cover
Shirley Aprilia
"ABSTRAK
Protein adalah salah satu biomakromolekul yang mempunyai peran sangat penting dalam organisme hidup. Semua jenis protein terdiri dari serangkaian kombinasi 20 asam amino. Interaksi Protein-Protein Interaksi PPI memainkan peran penting dalam sebagian besar proses biologis sehingga deteksi interaksi protein-protein PPI pada dasarnya penting untuk memahami mekanisme molekuler dalam sistem biologis. Dengan menggunakan proses komputasi dan menerapkan metode pembelajaran mesin, akan lebih efisien daripada metode eksperimental yang membutuhkan waktu lama dan biaya mahal. Dalam tesis ini penulis menggunakan Discrete Cosine Transform sebagai metode fitur ekstraksi barisan asam amino dan Rotation Forest sebagai model klasifikasi untuk mendapatkan kinerja yang lebih baik daripada metode sebelumnya, seperti Support Vector Machine, Random Forest, dan lain-lain. Hal baru dalam tulisan ini terletak pada interaksi protein protein dengan virus HIV yang menyebabkan AIDS. Hasil penelitian menunjukkan bahwa metode yang diusulkan layak dilakukan, kuat dan dapat digunakan untuk prediksi interaksi protein-protein lainnya dengan akurasi hingga 77 dan metode transformasi Rotation Forest yang menggunakan PCA lebih baik dibandingkan metode transformasi Rotation Forest yang menggunakan IPCA. Terdapat 962 protein yang berpotensi berinteraksi pada PCA dari 4529 potein dan 2902 protein pada IPCA dari 7499 protein.

ABSTRACT
Protein is one of the bio macromolecules that have a very important role in living organisms. All types of proteins consist of a series of combinations of 20 amino acids. Interaction of Protein Protein Interactions PPI plays an important role in most biological processes so that the detection of protein protein interactions PPIs is basically important for understanding molecular mechanisms in biological systems. By using computational processes and applying machine learning methods, it will be more efficient than experimental methods that take a long time and costly. In this thesis the author uses Discrete Cosine Transform as a method of extraction of amino acid sequences and Rotation Forest as a prediction model to get better performance than previous methods, such as Support Vector Machine, Random Forest, etc . The novelty in this paper lies in the interaction of protein proteins with the HIV virus that causes AIDS. The results show that the proposed method is feasible, robust and can be used for the classification of other protein interactions with up to 77 accuracy and Rotation Forest transformation methods using PCA better than Rotation Forest transformation methods using IPCA. There are 962 potentially interacting proteins in the PCA of 4529 potein and 2902 proteins in IPCA of 7499 proteins."
2018
T49487
UI - Tesis Membership  Universitas Indonesia Library