Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Iman Ansori
Abstrak :

Sistem dehidrasi glikol di Lapangan X bertujuan untuk menjaga kandungan air pada gas jual di bawah 10 lbs/MMSCFD sesuai permintaan konsumen. Dengan kondisi operasi saat ini, terdapat permasalahan kehilangan glikol yang menyebabkan biaya operasional bertambah. Penyebab kehilangan glikol dapat disebabkan oleh berbagai macam faktor, diantaranya karena permasalahan kadar keasaman (pH) yang tidak netral pada sirkulasi glikol (Azubuike & Michael, 2017) serta terjadinya oksidasi pada make up tank (Trueba et al., 2022). Pada Lapangan X, kondisi operasi tersebut pun terjadi, yaitu pH sirkulasi glikol berkisar antara 5 hingga 6 yang terukur pada make up tank. Terdapat beberapa metode untuk mengatasi kehilangan glikol, diantaranya penerapan Pre-Inhibited Glycol dan Nitrogen Blanketing. Makalah tesis ini membahas tentang pemecahan masalah kehilangan glikol dengan analisis proses pada kondisi aktual dan penerapan modifikasi Pre-Inhibited Glycol, Nitrogen Blanketing dan Metode Kombinasi Pre-Inhibited Glycol - Nitrogen Blanketing. Perangkat lunak yang digunakan untuk simulasi adalah Aspen HYSYS v11. Tujuan dari simulasi proses modifikasi ini adalah mendapatkan variabel kehilangan glikol fraksi massa TEG > 0.98 dan kadar air pada sales gas kurang dari 10 lbs/MMSCF. Analisis keekonomian dilakukan untuk menilai kelayakan modifikasi pada glikol dengan kriteria NPV ≥ 0, IRR ≥ WACC dan Payback Period ≤ 10 tahun. Berdasarkan hasil 100 studi kasus pada simulasi Aspen HYSYS, metode Nitrogen Blanketing merupakan metode yang memenuhi kelayakan teknis dengan parameter fraksi massa TEG sebesar 0.9808 – 0.9860, water content sebesar 9.15 – 12.04, dan pH 6.78 – 6.87. Secara kelayakan ekonomis, metode Nitrogen Blanketing juga layak dengan nilai IRR, NPV dan Payback Period berturut-turut sebesar 31.9%, Rp. 31.143.295 dan 1 tahun. 


The glycol dehydration system in Field X aims to maintain the water content of selling gas below 10 lbs/MMSCFD according to consumer demand. With current operating conditions, there is a problem of glycol loss, which causes operational costs to increase. The cause of glycol loss can be caused by various factors, including the problem of non-neutral acidity (pH) in glycol circulation (Azubuike & Michael, 2017) and oxidation in the makeup tank (Trueba et al., 2022). In Field X, the operating conditions also occur, namely that the circulating pH of glycol ranges from 5 to 6, which is measured in the make-up tank. There are several methods to overcome glycol loss, including the application of Pre-Inhibited Glycol and Nitrogen Blanketing. This research discusses solving the problem of glycol loss by analyzing the process under actual conditions and applying modified Pre-Inhibited Glycol, Nitrogen blanketing, and Pre-Inhibited Glycol-nitrogen blanketing combination methods. The software used for the simulation is Aspen HYSYS v11. The purpose of this modification process simulation is to obtain a variable loss of glycol mass fraction TEG > 0.98 and a water content in sales gas of less than 10 lbs/MMSCF. Economic analysis was carried out to assess the feasibility of modifying glycol with the criteria of NPV ≥ 0, IRR ≥  WACC, and Payback Period ≤ 10 years. Based on the results of 100 case studies on the Aspen HYSYS simulation, the Nitrogen Blanketing method is a method that meets technical feasibility with TEG mass fraction parameters of 0.9808–0.8860, water content of 9.15–12.04, and pH 6.78–6.77. In terms of economic feasibility, the Nitrogen Blanketing method is also feasible with IRR, NPV, and Payback Period values ​​of 31.9%, Rp. 31,143,295 and 1 year.

Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wa Ode Rena Zafirah
Abstrak :
Pemenuhan kebutuhan bahan bakar dilakukan dengan aktivitas impor bahan bakar yang menyebabkan defisit pada current account. Indonesia juga berkomitmen untuk ikut serta dalam pembatasan kenaikan suhu rata-rata global di Conference of Parties (COP) 21 dengan menurunkan emisi karbon sebesar 29% dengan usaha sendiri. Produksi Renewable diesel menggunakan teknologi hydrotreatment dengan bahan baku 100% bio-oil dan co-processing dengan bahan baku 50% bio-oil. Kapasitas produksi pada simulasi ini yaitu teknologi hydrotreatment sebesar 1,9 juta ton pertahun dan co-processing 633.600 ton pertahun dengan by-products LPG 297.840 ton pertahun, naphta 316.800 ton pertahun, dan bensin 617.700 ton pertahun. Biaya investasi atau CAPEX hydrotreatment dan co-processing masing-masing 1.198.000.000 USD dan 2.159.290.000 USD. Biaya operasional atau OPEX hydrotreatment dan co-processing masing-masing 1.612.800.000 USD dan 1.097.000.000 USD. NPV selama 25 tahun sebesar USD 18.779.951.443 dan USD 19.268.377.636. Internal rate of return hydrotreatment dan co-processing masing-masing 42% dan 32%. Biaya pokok produksi hydrotreatment dan co-processing masing-masing 68 USD/MJ dan 54 USD/MJ. Teknologi hydrotreatment dengan bahan baku 100% bio-oil lebih sensitif terhadap parameter bahan baku dan harga produk, sedangkan teknologi co-processing lebih sensitive terhadap parameter biaya operasional. Pelaksanaan produksi renewable diesel perlu memperhatikan sensitivitas parameter-parameter tersebut.
Fulfillment of fuel needs is carried out with fuel import activities that cause a current account deficit. Indonesia is also committed to participating in limiting global average temperature increases at Conference of Parties (COP) 21 by reducing carbon emissions by 29% on its own. Renewable diesel production using hydrotreatment technology with 100% bio-oil raw material and co-processing with 50% bio-oil raw material. The production capacity of hydrotreatment is 1.9 million tons per year and co-processing 633.600 tons per year with by-products LPG 297.840 tons per year, naphta 316.800 tons per year, and gasoline 617.700 tons per year. Investment costs or CAPEX hydrotreatment and co-processing are 1.198.000.000 USD and 2.159.290.000 USD, respectively. Operational costs or OPEX of hydrotreatment and co-processing are 1.612.800.000 USD and 1.097.000.000 USD, respectively. NPV for 25 years amounted to USD 18.779.951.443 and USD 19.268.377.636. Internal rate of return hydrotreatment and co-processing are 42% and 32%, respectively. The levelized cost of energy of hydrotreatment and co-processing are 68 USD/MJ and 54 USD/MJ, respectively. Hydrotreatment technology with 100% bio-oil raw material is more sensitive to raw material parameters and product prices, while co-processing technology is more sensitive to operational cost parameters. The implementation of renewable diesel production needs to consider the sensitivity of these parameters.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Syafieq Ridho
Abstrak :
Di dalam dunia industri, operasi pencampuran banyak digunakan untuk mengolah bahan mentah menjadi suatu produk seperti minyak bumi, bahan kimia, dan lainnya. Biasanya, pada plant skala industri digunakan PID kontroler sebagai sistem pengendaliannya, akan tetapi PID kontroler ini akan menjadi kurang baik ketika menghadapi sistem non-linear, sehingga pada penilitian ini dirancang suatu sistem kendali berbasis neural network yang diharapkan dapat memberikan performa yang lebih baik dan efisien dibandingkan PID konvensional. Model plant yang digunakan untuk simulasi di dalam penelitian ini adalah proses pencampuran air, dimana temperatur dan level air akan dikendalikan. Dibuat dua jenis sistem pengendali neural network (NN) dengan perbedaan pada input-nya, yaitu NN dengan input SP, PV(n), PV(n-1) dan NN dengan input SP, error, dan perubahan error. Kedua sistem pengendali neural network ini dibuat dengan menggunakan metode feed-forward neural network dan simulasinya dibuat dengan menggunakan Simulink. Berdasarkan hasil pengujian, dapat disimpulkan bahwa sistem pengendalian dengan menggunakan neural network memberikan performa yang lebih baik jika dibandingkan dengan sistem pengendalian PID konvensional, yaitu dengan settling time dan rise time yang lebih cepat, serta menghasilkan respon sistem yang tidak memiliki overshoot sama sekali.
In the industrial world, blending operations are widely used to process raw materials into products such as petroleum, chemicals, and others. Usually, in industrial-scale plants, the PID controller is used as a control system, but this controller will be less good when dealing with non-linear systems. In this study, a neural network-based control system is expected to provide better and more efficient performance compared to conventional PID control. The plant model used for simulation in this study is the process of mixing water, where the temperature and water level will be controlled. Created two types of neural network (NN) control systems with differences in the input, the first is a NN with SP, PV(n), PV(n-1) for the input, and the second is a NN with SP, error, and change of error for the input. Both of these neural network control systems are made using a feed-forward neural network method, and the simulation was created by using Simulink. Based on the test results, it can be concluded that the control system using a neural network provides better performance when compared to conventional PID control systems with a faster settling time and rise time, and produces a system response that has no overshoot at all.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akbar Maulana
Abstrak :
Penelitian ini mengusulkan GreenPRO sebagai solusi untuk mengeksplorasi integrasi energi osmotik dalam konteks pertanian, dengan fokus pada pembangkitan listrik. Tiga desain PRO dievaluasi untuk ekstraksi energi dari larutan nutrisi seperti DAS, KCl, dan MAP, dengan variasi konsentrasi antara 0,1 hingga 5,0 mol/L. Desain 1 mampu mengekstraksi 2,2 hingga 3,3 kWh/m³ energi melalui proses fertigasi, dengan densitas energi meningkat seiring dengan konsentrasi. Namun, desain 2 dan 3 memerlukan energi eksternal dan hanya mampu mengekstraksi 0,002 hingga 4,43% dari energi yang diekstraksi oleh desain 1. Meskipun perbedaan ini signifikan, desain 1 sulit diaplikasikan secara praktis karena keterbatasan struktural membran komersial dan efek polarisasi konsentrasi (CP) serta reverse salt flux (RSF) dalam proses desain. Namun demikian, desain 2 atau 3 menunjukkan densitas daya membran yang masih kompetitif secara komersial, terutama pada konsentrasi 5 mol/L KCl dengan densitas daya sekitar 5,33 W/m². Studi ini juga menguji potensi ekstraksi energi osmotik pada beberapa tanaman hidroponik umum dengan nutrisi tunggal, menghasilkan hingga 104 Wh/m³/tahun energi dalam kondisi praktis, menghemat sekitar 1,5% dari konsumsi listrik. Analisis ekonomi menunjukkan bahwa proyek PRO cukup berhasil, dengan IRR mencapai 19,97%. ......This research proposes GreenPRO as a solution to explore the integration of osmotic energy in agriculture, focusing on electricity generation. Three PRO designs were evaluated for energy extraction from nutrient solutions such as DAS, KCl, and MAP, with varying concentrations between 0.1 to 5.0 mol/L. Design 1 was able to extract 2.2 to 3.3 kWh/m³ of energy through the fertigation process, with energy density increasing along with the concentration. However, designs 2 and 3 required external energy and could only extract 0.002 to 4.43% of the energy extracted by design 1. Despite this significant difference, design 1 is challenging to apply practically due to the structural limitations of commercial membranes and the effects of CP and RSF in the design process. Nevertheless, designs 2 or 3 demonstrated membrane power densities that are still commercially competitive, especially at a concentration of 5 mol/L KCl with a power density of around 5.33 W/m². The study also tested the potential for osmotic energy extraction on several common hydroponic plants with single nutrients, yielding up to 104 Wh/m³/year of energy under practical conditions, saving about 1.5% of electricity consumption. Economic analysis indicates that the PRO project is quite successful, with an IRR of 19.97%.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdi Fajrian Adicandra
Abstrak :
Optimalisasi pabrik regasifikasi liqufied natural gas LNG penting dilakukan untuk meminimilasi biaya, khususnya biaya operasional. Oleh karena itu penting untuk memilih desain pabrik regasifikasi LNG dan mendapatkan kondisi operasi yang optimum serta mempertahankan kondisi operasi yang optimum tersebut melalui implementasi model predictive control MPC. Kriteria optimalnya adalah minimumnya jumlah energi yang digunakan dan atau integral of square error ISE. Hasilnya, disain yang optimum adalah menggunakan skema 2 dengan penghematan energi sebesar 40. Sedangkan kondisi operasi yang optimum terjadi jika suhu keluaran vaporizer sebesar 6oC. Untuk mempertahankan kondisi optimum tersebut diperlukan MPC dengan setelan parameter P prediction horizon , M control horizon dan T sampling time sebagai berikut: pengendali tekanan tangki penyimpanan: 90, 2, 1; tekanan produk: 95, 2, 1; suhu vaporizer: 65, 2, 2; dan suhu heater: 35, 6, 5, dengan nilai ISE pada set point tracking masing-masing 0,99, 1792,78, 34,89 dan 7,54, atau peningkatan kinerja pengendalian masing-masing sebesar 4,6 , 63,5 , 3,1 dan 58,2 dibandingkan kinerja pengendali PI. Penghematan energi yang dapat dilakukan pengendali MPC saat terjadi gangguan pada kenaikan suhu air laut 1oC adalah 0,02 MW dan pengendali MPC juga mengurangi error terhadap kualitas produk sebesar 34,25 dibandingkan dengan menggunakan pengendali PI.
Optimization of liquified natural gas LNG regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to select the LNG regasification plant design and obtain optimum operating conditions while maintaining the optimum operating conditions through the implementation of model predictive control MPC. The optimal criterion is the minimum amount of energy used and or the integral of square error ISE. As a result, the optimum design is to use scheme 2 with an energy savings of 40 . While the optimum operating conditions occur if the vaporizer output temperature is 6oC. In order to maintain the optimum conditions, MPC is required with parameter setting P prediction horizon, M control horizon and T sampling time as follows tank storage pressure controller 90, 2, 1 product pressure 95, 2, 1 temperature vaporizer 65, 2, 2 and temperature heater 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6, 63.5 , 3.1 and 58.2 compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in sea temperature rise of 1oC is 0.02 MW and MPC controller also reduces error to product quality by 34.25 compared to the PI controller.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adrian Ramadhan
Abstrak :
ABSTRAK
Praktek pembuangan sampah pada saat ini memaksakan kapasitas 380 tempat pembuangan akhir sampah di Indonesia mendekati batasnya. Melalui berbagai teknologi konversi sampah ke energi, sampah tersebut dapat dimanfaatkan untuk menghasilkan listrik. Salah satu dari teknologi ini adalah digesti anaerob, yang menghasilkan biogas kaya akan methan untuk membangkitkan listrik. Penelitian ini memiliki tujuan mengevaluasi jumlah biogas dan listrik yang dapat dihasilkan dari sejumlah tertentu fraksi organic sampah kota dan performa ekonomi dari pabrik tersebut. Simulasi proses dengan bantuan perangkat lunak akan digunakan untuk mempelajari proses produksi biogas dari sampah. Sementara itu, levelized cost of electricity akan digunakan untuk meninjau kelayakan ekonomi dari proyek tersebut. Digesti anaerob dari 2000 ton sampah padat per hari di Jakarta menghasilkan 73,368.48 STD m3/jam dan menghasilkan tenaga sebesar 212.63 MW dengan menggunakan teknologi CCGT. Didapatkan nilai Levelized Cost of Electricity dari teknologi ini sejumlah 9.9 cent USD/kWh.
ABSTRACT<>br> The current practice of dumping waste is forcing the capacity of the 380 landfill sites located in Indonesia to its limits. Through the various waste to energy technologies that are available in the market, it is possible to utilize the waste that is generated into electricity by combined cycle gas turbine CCGT . One of these technologies is anaerobic digestion, which produces biogas rich in methane that can be used to generate electricity. This research has the purpose of evaluating the amount of biogas and electricity produced from a certain amount of organic fraction of municipal solid waste and the economic performance of the plant. The overall process of biogas production and electricity generation will be simulated using SuperPro Desgner and Unisim Design software. Meanwhile, the levelized cost of electricity of the project is used to review its economic performance. The anaerobic digestion of 2000 tons of organic waste per day in Jakarta results in the production of 73,368.48 STD m3 h and produces a net power of 212.63 MW of electricity using CCGT. The Levelized Cost of Electricity of this technology is calculated to be 9.9 cent USD kWh.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aditya Pratama Putra
Abstrak :
Pada penelitian ini, simulasi integrasi proses dalam produksi produk hilir kelapa sawit dapat dilakukan untuk satu masukan minyak kelapa sawit. Simulasi integrasi proses ini terdiri dari tiga mekanisme besar simulasi proses yaitu mekanisme pembuatan biogasoline, biodiesel, dan biopelumas. Variasi kondisi operasi pada integrasi proses ini dilakukan untuk mencari kondisi operasi optimum integrasi proses ini. Variasi tersebut adalah variasi suhu reaktor biogasoline, biodiesel, dan biopelumas dan rasio laju alir reaktan metanol pada proses biodiesel, rasio laju alir gliserol dan FAME pada proses produksi biopelumas. Menurut hasil simulasi yang diperoleh, kondisi optimum yang dapat dicapai adalah rasio laju alir FAME sebesar 8 : 2, temperatur reaktor biogasoline sebesar 425°C, temperatur reaktor biodiesel sebesar 65°C, temperatur reaktor biopelumas sebesar 60°C.
In this research, integrated process simulation for palm oil downstream product is reliable in one input. This integrated process simulation consist of three main simulation process mechanism such as biogasoline production mechanism, biodiesel production mechanism, and biolubricant production mechanism. Operation condition of integrated process simulation will be variated in order to find optimum condition process. These variation such as reactor temperature in biogasoline, biodiesel and biolubricant reactor, flowrate ratio of methanol to oil in biodiesel production process and flowrate ratio of FAME in biolube production process. This result of this research is the optimum condition could be reach in flowrate ratio of FAME to oil as 8 : 2, 425°C is gasoline reactor temperature, 65°C is biodiesel reactor temperature,and 60°C is biolubricant reactor temperature.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52177
UI - Skripsi Open  Universitas Indonesia Library
cover
Herman Dinata Saputra
Abstrak :
Program pembangunan jaringan pipa distribusi gas bumi untuk rumah tangga yang saat ini sedang dilakukan pemerintah untuk mensubsitusi penggunaan bahan bakar minyak ke gas bumi memiliki nilai yang sangat strategis. Karena dengan mengalihkan pengunaan bahan bakar minyak ke gas bumi akan memberikan dampak yang positif bagi masyarakat maupun pemerintah. Keuntungan yang akan diperoleh masyarakat adalah mendapatkan energi yang lebih bersih, ramah lingkungan, murah dan aman. Sedangkan dari sisi pemerintah dapat mengurangi beban subsidi yang saat ini mencapai Rp.48,2 Triliun. Namun, usaha ini belum maksimal karena masih kurangnya infrastruktur atau fasilitas penyaluran gas bumi ke konsumen. Oleh karena itu, dalam studi ini akan dilakukan simulasi proses jaringan pipa distribusi gas bumi untuk rumah tangga sebagai salah satu langkah awal pembangunan infrastruktur sistem distribusi gas bumi untuk rumah tangga. Studi kasus yang akan dilakukan adalah di wilayah Kota Pekanbaru, Bandar Lampung, Muara Enim dan Cilegon. Langkah-langkah yang akan dilakukan meliputi pengumpulan data dan analisis data, penetapan sumber pasokan gas bumi, penetapan kecamatan prioritas, simulasi dan analisa hasil simulasi, serta rekomendasi dan kesimpulan. Simulasi dilakukan menggunakan perangkat lunak sistem perpipaan. Hasil studi ini menghasilkan desain basis proses untuk jaringan pipa distribusi gas bumi dan dimensi pipa yang dibutuhkan untuk jaringan pipa distribusi gas bumi ini. ......Program development natural gas distribution pipelines to households currently being done by the government for substitution oil fuel to natural gas has a very strategic value. Since the substitution of oil fuel usage to natural gas will have a positive impact for the society and government. Gains for society is getting more clean energy, environmental friendly, cheap and safe. While the government can reduce the burden of subsidies currently reached Rp.48.2 Trillion. However, these efforts are not maximized due to a lack of infrastructure or natural gas distribution facilities to consumers. Therefore, in this study will be conducted process simulation of natural gas distribution pipelines to households as one of the first steps of infrastructure development of natural gas distribution system for households. Case studies will be done is in the city of Pekanbaru, Bandar Lampung, Muara Enim and Cilegon. The steps to be taken include data collection and analysis, determining the source of gas supply, setting priorities district, simulation and analysis, and recommendations and conclusions. Simulations are conducted using the software pipeline system. The results of this study produced the basis design for the process of distribution pipelines and pipe dimensions required for natural gas distribution pipelines.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52219
UI - Skripsi Open  Universitas Indonesia Library