Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Aziz Setia Aji
Abstrak :
ABSTRAK
Badan Meteorologi Klimatologi dan Geofisika (BMKG) memiliki tugas pengamatan terhadap magnet bumi yang tersebar di Indonesia. Sensor magnetik bumi BMKG menghasilkan output data real-time. Penelitian ini berfokus pada model predictive maintenance pada sensor magnetik bumi berdasarkan output data sensor. Output data yang dihasilkan adalah dalam bentuk format delimited-space sehingga mudah untuk diproses. Komponen magnetik yang digunakan dalam penelitian ini adalah data komponen total magnet bumi (F) dari sensor. Pemrosesan data menggunakan bahasa pemograman python dan algoritma yang digunakan adalah metode random forest regression dengan membandingkan perbedaan nilai yang dihasilkan dengan data Indoesian Geomagnetic Maps for Epoch 2015.0 untuk kemudian dibuatkan model prediksi terhadap waktu. Proses tersebut digunakan untuk mengetahui apakah data yang dihasilkan masih dalam toleransi atau tidak. Tahapan dalam penelitian ini mulai dari pengumpulan data, pre-processing data, pembuatan model, hingga pengujian model dan validasi terhadap model. Penelitian ini menghasilkan estimasi waktu pemeliharan sebesar 14 hari pada data baseline nilai F dan sebesar 3 hari pada data delta F (ΔF).
ABSTRACT
The Meteorological, Climatological, and Geophysical Agency (BMKG) has the task of observing the earth magnets spread across Indonesia. Earth magnetic sensor of BMKG delivers real-time data output. The study focuses on the predictive maintenance model on the earth's magnetic sensor based on sensor data output. The resulting data output is in the form of delimited-space format so it is easy to process. The magnetic component used in this study is data on the earth's total magnetic component (F) from the sensor. Data processing uses python programming language and the algorithm used is a random forest regression method by comparing the value difference generated with the Indoesian Geomagnetic Maps for Epoch 2015.0 data for later created predictive models against time. The process is used to determine whether the resulting data is still in tolerance or not. The stages in this study range from data collection, pre-processing data, create model, model testing, and model validation. The study resulted in a 14-day maintenance time estimate of the baseline data F-value and 3-day in the delta F (ΔF) data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Abstrak :
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.
Switzerland: Springer Nature, 2019
e20509408
eBooks  Universitas Indonesia Library
cover
Adimas Putra Pratama Hendrata
Abstrak :
Masuknya industri 4.0 di Indonesia membuat mesin dapat terintegrasi dengan komputer melalui perangkat IoT sehingga membuat proses produksi lebih efisien. Salah satu upaya untuk mempertahankan hal tersebut adalah dengan melakukan maintenance menggunakan metode predictive maintenance. Kegagalan mesin dalam predictive maintenance dapat diprediksi menggunakan machine learning. Metode sequence processing adalah algoritma machine learning yang cocok digunakan dalam predictive maintenance berbasis timeseries. Penelitian ini mencoba berbagai macam cara penerapan sequence processing untuk memprediksi kegagalan pada mesin. LSTM merupakan metode sequence processing yang populer digunakan untuk predictive maintenance. Terdapat tiga cara penerapan model LSTM yang diuji pada penelitian ini, yaitu model klasifikasi, regresi, dan regresi menggunakan sequence to sequence Ketiga model tersebut akan diuji menggunakan data yang didapat dari database terbuka. Setiap model akan dievaluasi dan dikomparasi untuk mengetahui model yang terbaik. Penelitian ini menunjukkan bahwa model klasifikasi memiliki kinerja yang buruk karena mengalami overfitting. Sementara itu, model regresi sequence to sequence memiliki kinerja yang paling baik, yaitu dengan nilai f-1 score mencapai 57.45%. ......The implementation of Industry 4.0 in Indonesia enables machines to be integrated with computers through IoT devices, resulting in more efficient production processes. One of the efforts to maintain this is by performing maintenance using predictive maintenance methods. Machine learning can be used to predict machine failures in predictive maintenance. Sequence processing is a suitable machine learning algorithm for predictive maintenance based on timeseries data. This research explores various ways to apply sequence processing for predicting machine failures. LSTM is a popular sequence processing method used in predictive maintenance. Three approaches for implementing LSTM models were tested in this study: classification, regression, and sequence to sequence regression. These models were tested using data obtained from an open database. Each model was evaluated and compared to determine the best-performing model. The research findings indicate that the classification model performed poorly due to overfitting. On the other hand, the sequence to sequence regression model achieved the best performance, with an f-1 score of 57.45%.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library