Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Togatorop, Vincent Andreas Constantein
Abstrak :
Luasnya dampak negatif gangguan depresi terhadap kehidupan seseorang membawa urgensi akan pentingnya metode diagnosis yang akurat dan objektif agar bisa menerapkan langkah pengobatan yang cepat pada pasien yang depresi. Metode diagnosis gangguan depresi yang berbasis kuesioner atau wawancara berpotensi subyektif, karena pasien bisa saja tidak menceritakan dengan detail kondisi yang dialaminya. EEG dapat menjadi sarana alternatif untuk mencapai diagnosis yang akurat dan objektif tersebut. Sinyal EEG mengandung banyak fitur yang dapat diekstrak dengan mudah, contohnya Relative Power Ratio (RPR). Penelitian ini mengekstrak fitur RPR dari sinyal EEG dengan menggunakan dua metode, yaitu STFT (Short-Time Fourier Transform) dan PSD (Power Spectral Density) dari 14 elektroda EEG yang tersedia. Fitur RPR yang diekstrak akan direduksi menggunakan algoritma PCA (Principal Component Analysis) ke dalam dimensi yang lebih rendah dengan tetap mempertahankan variansi (informasi) fitur sebesar 90%. Model ANN (Artificial Neural Network) dengan jenis FNN (Feedforward Neural Network) digunakan untuk klasifikasi pasien yang sehat dengan yang depresi. Dampak dari algoritma PCA akan dilihat pada performa model FNN dan lama waktu pelatihan yang dibutuhkan model FNN. Performa model yang akan diukur adalah akurasi, sensitivitas dan spesifisitas. Performa model akan divalidasi menggunakan 10-Fold Validation yang dijalankan sebanyak 10 iterasi. PCA berhasil mereduksi dimensi fitur RPR sebesar 57.1% dengan metode PSD dan 57.1% dengan metode STFT. Akurasi tertinggi yang didapatkan model FNN adalah 69.5% ketika menerapkan algoritma PCA pada RPR metode PSD, dan 68% ketika menerapkan algoritma PCA pada fitur RPR metode STFT. Penerapan PCA pada fitur RPR menurunkan waktu pelatihan model sebesar 6.33% dengan metode PSD dan sebesar 42.56% dengan metode STFT. Performa model FNN lebih baik setelah penerapan PCA dibandingkan dengan menggunakan fitur RPR langsung ke dalam model FNN. Hal ini menunjukkan bahwa PCA memiliki potensi untuk menurunkan waktu pelatihan model FNN dengan tetap mempertahankan performa model FNN. ......The extent of the negative impact of depressive disorder on a person’s life raises the urgency of the importance of an accurate and objective diagnostic method to quickly apply treatment steps for depressive patients. Diagnostic method that based on questionnaire and interview has the potential to be subjective, because the patient might be not fully explain his condition. EEG or Electroencephalography could be an alternative way to achieve the accurate and objective diagnostic. EEG signal has many features that can be extracted easily, for example the Relative Power Ratio. This research extracted RPR features from EEG signal by implementing two methods, STFT (Short-Time Fourier Transform) and PSD (Power Spectral Density) from 14 available EEG electrodes. The extracted RPR features will be reduced by using PCA algorithm to a lower dimension while still retaining 90% variance (information) from the features. ANN (Artificial Neural Network) with the type of FNN (Feedforward Neural Network) will be used to classify healthy patients with depressed patients. The effect of PCA algorithm will be seen on the FNN model’s performances and on the training duration of the FNN model. Model’s performances that will be measured are accuracy, sensitivity, and specificity. Model’s performances will be validated by using 10-Fold Validation which will be executed for 10 iterations. PCA managed to reduce 57.1% RPR features’ dimensions by using PSD method and 57.1% by using STFT method. The highest accuracy achieved by FNN model is 69.5% when implementing PCA algorithm to the RPR features from the PSD method, and 68% when implementing PCA algorithm to the RPR features from STFT method. The implementation of PCA to the RPR features managed to reduce 6.33% training duration of FNN model for the PSD method and 42.56% for the STFT method. Better FNN model’s performances are shown after the implementation of PCA algorithm compared to when using the RPR features directly to the FNN model. This shows that PCA has a potential of reducing the training duration of the FNN model while still retaining FNN model’s performances.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Esmeralda C. Djamal
Abstrak :
Pada penelitian ini telah dibangun, sistem deteksi dan identifikasi untuk pengenalan dan klasifikasi komponen-komponen sinyal EEG, terhadap sinyal EEG asimetri yang diperoleh dari perekaman pada kanal simetri. Sinyal EEG diperoleh dari 7 nara coba pada dua kondisi pikiran, yaitu rileks dan berpikir (non-rileks). Terhadap koefisien wavelet dari sinyal asimetri yang diperoleh selanjutnya dilakukan analisis Power Spectral Density (PSD). Sistem Klasifikasi dibangun berdasarkan spektrum daya pada daerah gehmbang dan dengan uji hipotesis serta pengetahuan apriori tentang karakteristik energi komponen gehmbang EEG. Penggunaan transformasi wavelet dapat mengatasi sifat non-stasioner, dan modifikasi sistem klasifikasi dengan uji hipotesis, meningkatkan keberhasilan klasifikasi, sehingga pada kondisi rileks memberikan hasil 85% dan kondisi non-rileks sebesar 64%. Dibandingkan metoda yang lain, transformasi wavelet juga dapat mereduksi data tanpa kehilangan informasi yang berarti, Hal ini ditunjukkan oleh penyimpangan rekonstruksi koefisien wavelet terhadap sinyal asliyang kecil. Sementara pengaruh posisi elektroda terhadap keberhasilan pengamatan, diketahui bahwa posisi sentral memberikan keberhasilan terbaik sedangkan kanal occipital terburuk. Kondisi rileks ditunjukkan, hasil spektrum daya rata-rata seimbang untuk kanal yang simetrik dibanding kondisi non-rileks, Kurangnya keberhasilan yang diperoleh pada kondisi berpikir disebabkan kitrangnya konsistensi pada kondisi tersebut, disamping kondisi rileks belum sepenuhnya hilang.
In this research a detection and identification system for pattern recognition and classification of wave components of an asymmetric of two symmetrical EEG signal were developed. The EEG signal was obtained from 7 subjects with two conditions, relax and non-relax. The detection and identification was based on the non-symmetry signal recorded on a symmetric channel test of hypothesis and priori learning of energy characteristic of component of the EEG signal. In the proposed method, the wavelet approximated coefficient of the non-symmetry EEG signal was analyzed using power spectral density (PSD) method. The wavelet transformation is suitable for non-stationary signal, the results were better for non-relax, that was 64%. Alternatively, in the relax condition, the result was 85%. The advantage of the wavelet transformation with respect to the other methods is that of can reduce the number of data without loss of information. It was shown by small deflection between reconstruction of wavelet and original signal. In term of the channel position, occipital channel gives best result for relax condition, while central channel for non-relax. The less success of non-relax conditions because of lack of consistency of the condition, where some of alpha waves were remain.
2004
JUTE-XVIII-4-Des2004-263
Artikel Jurnal  Universitas Indonesia Library
cover
Shifeng Wang
Abstrak :
This book provides cutting-edge insights into autonomous vehicles and road terrain classification, and introduces a more rational and practical method for identifying road terrain. It presents the MRF algorithm, which combines the various sensors classification results to improve the forward LRF for predicting upcoming road terrain types. The comparison between the predicting LRF and its corresponding MRF show that the MRF multiple-sensor fusion method is extremely robust and effective in terms of classifying road terrain. The book also demonstrates numerous applications of road terrain classification for various environments and types of autonomous vehicle, and includes abundant illustrations and models to make the comparison tables and figures more accessible.
Singapore: Springer Nature, 2019
e20509864
eBooks  Universitas Indonesia Library