Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Ardy Lefran Lololau
Abstrak :
Penelitian ini bertujuan menganalisis dan mengestimasi secara teoretis mekanika dan fenomena kerusakan pada pembebanan multiaksial komposit alami rami/PLA. Estimasi sifat mekanik multiaksial komposit rami/PLA dilakukan berdasarkan mekanika komposit yang dimodelkan dari karakteristik rami dan PLA. Hasil pengujian mekanik ASTM D638, D695 dan D3846 masing-masing menunjukan PLA berkekuatan tarik, tekan dan geser sebesar 20.32, 90.14 dan 21.22 MPa, dengan modulus elastisitas 1.75 GPa. Dengan fraksi volume penguat 26%, rami dan PLA dimodelkan dalam suatu lamina unidireksional dengan kekuatan ultimat tarik longitudinal 109.8 MPa dan transversal 12.3 MPa, kekuatan ultimat tekan longitudinal 87.94 MPa dan tranversal 83.09 MPa, serta kekuatan geser ultimat 13.01 MPa melalui pengujian mekanik masing-masing berstandar ASTM D3039, D3410 dan D3518. Lamina-lamina ini kemudian disusun dalam laminasi yang terdiri dari delapan lamina yang berorientasi simetris-seimbang, kemudian diterapkan pada struktur tabung dinding tipis untuk diberikan pembebanan multiaksial. Dengan tekanan dalam konstan 1.2 MPa sekaligus beban biaksial tensi torsi, secara semi-empiris, laminasi thin-walled tube komposit rami/PLA mampu menahan tegangan longitudinal maksimum 120.5 MPa dan tegangan geser bidang maksimum 13.03 MPa. Fenomena kerusakan laminasi menunjukan adanya kecenderungan pada tiga pola kerusakan yang diobservasi pada rasio biaksial positif dan berakibat pada evolusi tegangan regangan global pada laminasi tabung dinding tipis komposit rami/PLA. ......This study aims to theoretically analyze and estimate the mechanics and damage phenomena under multiaxial loading experienced by ramie/PLA bio-composites. The multiaxial mechanical behavior estimation was modeled from its constituents’ properties based on the mechanics of composite materials. The mechanical test result shows that PLA had tensile, compressive, and shear strengths of 20.32, 90.14, and 21.22 MPa, respectively, with a modulus of elasticity of 1.75 GPa using ASTM D638, D695, and D3846 as their standards. With reinforcements’ volume fraction of 26%, ramie and PLA were modeled in a unidirectional lamina with the ultimate longitudinal tensile strength of 109.8 MPa and 12.3 MPa on transversal axis, ultimate longitudinal compressive strength of 87.94 MPa and 83.09 MPa on transversal axis, and ultimate shear strength of 13.01 MPa from mechanical testing according to ASTM D3039, D3410, and D3518 standards, respectively. These laminas were then stacked in a laminate of eight symmetrical-balanced oriented lamina, then applied to a thin-walled tube structure subjected to multiaxial loading. With a constant internal pressure of 1.2 MPa and biaxial tension-torsion loads, semi-empirically, the thin-walled tube ramie/PLA laminate can retain maximum longitudinal stress of 120.5 MPa and maximum in-plane shear stress of 13.03 MPa. The damage phenomena of laminate show that it tends to propagate in the three damage patterns observed in six positive biaxial ratios and finally will affect the evolution of stress and strain globally in the ramie/PLA thin-walled tube laminate.
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adira Nofeadri Ryofi
Abstrak :
Ukuran mikrosfer merupakan faktor utama penentu laju pelepasan obat. Keseragaman ukuran akan meningkatkan efesiensi dan laju dissolusi obat. Pada penelitian ini span 80 digunakan sebagai surfaktan penstabil emulsi dan pengontrol ukuran dalam pembuatan mikrosfer polipaduan poli asam laktat PLA dan polikaprolakton PCL melalui metode penguapan pelarut emulsi water-in-oil W/O. Pengaruh penambahan span 80 terhadap ukuran mikrosfer polipaduan PLA dan PCL dipelajari melalui variasi volume span 80, waktu pengadukan dispersi, dan kecepatan pengadukan emulsi. Mikrosfer yang terbentuk pada berbagai perlakuan dikarakterisasi menggunakan PSA dan FTIR. Hasil variasi menunjukkan bahwa ukuran mikrosfer menurun seiring dengan meningkatnya volume span 80, waktu pengadukan dispersi dan kecepatan pengadukan emulsi. Ukuran mikrosfer yang dihasilkan melalui variasi volume adalah 1,128, 1,004, dan 0,764 m untuk setiap penambahan volume 0,5, 1, dan 1,5 ml. Variasi waktu pengadukan dispersi selama 0,5, 1,5, dan 2 jam menghasilkan ukuran mikrosfer sebesar 2,233, 1,918, dan 1,045 m secara berturut-turut. Variasi kecepatan pengadukan emulsi 800 rpm dan 900 rpm menghasilkan ukuran 1,178 dan 0,839 m. Bentuk fisik mikrosfer sebagian speris dan sebagian lainnya membentuk aggregat dikarakterisasi menggunakan mikroskop optik.
AbstractMicrosphere size is primary determinants of drug release rate. The microspheres of uniform size will increase efficiency and the dissolution rate of drug loaded. In this study, span 80 was used as emulsion stabilizer and size controller in preparation of polyblend polylactic acid PLA and polycaprolactone PCL microspeheres by water in oil W O emulsion solvent evaporation method. The effect of span addition on the size of PLA and PCL microspheres was studied by volume variation of span 80, stirring time of dispersion and emulsion stirring speed. The result of variation treatment of microspheres were characterized using PSA and FTIR spectrophotometer. The variasion result showed that the particle size of PLA PCL microspheres decreased with increasing volume of span 80, dispersion stirring time, and emulsion strirring speed. Microspheres size generated through variations of volume were 1,128, 1,004, and 0,764 m for the addition volume of span 80 0.5, 1, 1.5 ml respectively. Variations of dispersion stirring time yielded size 2,233, 1,918, and 1,045 m for 0.5, 1.5, 2 h in a row. Variations in stirring speed emulsion 800 rpm dan 900 rpm resulted in size 1,178 and 0,839 m respectively. Physical forms of microspheres showed that some spherical and the other aggregates were characterized by optical microscope.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Eka Purnama
Abstrak :
Inovasi dalam bidang rekayasa jaringan dan manufaktur aditif mendorong pengembangan scaffold tulang cerdas yang dapat disesuaikan secara kustomisasi. Scaffold cerdas ini meniru sifat mekanik dan biologis tulang asli, dan memiliki kemampuan self-fitting. Penelitian ini bertujuan untuk menguji pengaruh penambahan senyawa bioaktif hidroksiapatit (HAp) pada scaffold berbahan PLA yang dibuat menggunakan metode pencetakan 3D FDM. Scaffold PLA kemudian dilapisi dengan lapisan HAp melalui proses perlakuan alkali selama 1 jam, diikuti dengan coating dispersi 1% w/v HAp. Penambahan HAp bertujuan untuk meningkatkan biokompatibilitas dan bioaktivitas scaffold. Variabel yang diamati dalam penelitian ini adalah waktu agitasi coating dispersi HAp, yaitu 0,5, 1, dan 2 jam. Pengaruh waktu agitasi terhadap bioaktivitas dan sifat mekanik scaffold diamati melalui pengujian imersi dalam larutan simulasi cairan tubuh (r-SBF), pengujian swelling, observasi visual menggunakan mikroskop optik, SEM & EDS, dan pengujian kompresi dinamis. Hasil pengujian imersi menunjukkan bahwa scaffold PLA/HAp memiliki bioaktivitas enam kali lipat dibandingkan dengan scaffold PLA dengan variabel 1% w/v HAp-1 jam sebagai kondisi optimal. Deposisi mineral apatit terjadi selama tujuh minggu imersi dalam r-SBF, sedangkan perubahan warna PLA terjadi pada minggu ketiga hingga keempat. Hasil SEM & EDS pada scaffold imersi r-SBF selama 7 minggu menunjukkan ukuran deposisi apatit lebih besar pada sampel PLA/HAp, munculnya porositas pada permukaan scaffold, dan retakan permukaan. Hasil pengujian swelling menunjukkan peningkatan rasio swelling seiring peningkatan waktu agitasi, yang menunjukkan peningkatan sifat hidrofilik scaffold. Namun, penambahan waktu agitasi juga berhubungan dengan penurunan kemampuan self-fitting scaffold. Scaffold PLA dapat mengalami enam siklus kompresi dan pemulihan sebelum mengalami kegagalan, sebesar 97-99%. Sementara itu, scaffold PLA/HAp mengalami kegagalan setelah dua siklus kompresi dan pemulihan, dengan pemulihan mencapai 90-91% akibat intrusi HAp pada penampang strut. Secara keseluruhan, penambahan HAp pada scaffold berbasis PLA meningkatkan biokompatibilitas dan bioaktivitas. Kondisi optimalnya adalah 1% w/v HAp-1 jam, memberikan solusi yang menjanjikan untuk aplikasi regenerasi medis dan rekayasa jaringan. ......Innovation in the field of tissue engineering and additive manufacturing is driving the development of customizable smart bone scaffolds. These smart scaffolds mimic the mechanical and biological properties of natural bone and possess self-fitting capabilities. This research aims to investigate the influence of adding bioactive compound hydroxyapatit (HAp) to PLA-based scaffolds produced using the FDM 3D printing method. The PLA scaffold was subsequently coated with an HAp layer through an alkaline treatment process for 1 hour, followed by a 1% w/v HAp dispersion coating. The addition of HAp aims to enhance the biocompatibility and bioactivity of the scaffold. The variable observed in this study is the agitation time for the HAp dispersion coating, which was set at 0.5, 1, and 2 hours. The influence of agitation time on the bioactivity and mechanical properties of the scaffold was evaluated through immersion testing in simulated body fluid (r-SBF), swelling testing, visual observation using optical microscopy, SEM & EDS analysis, and dynamic compression testing. The immersion test results revealed that the PLA/HAp scaffold exhibited six times higher bioactivity compared to the PLA scaffold, with the optimal condition being 1% w/v HAp-1 hour. Apatit mineral deposition occurred during a seven-week immersion in r-SBF, while PLA color change was observed from the third to fourth week. SEM & EDS analysis of the scaffolds immersed in r-SBF for seven weeks showed larger apatit deposition on the PLA/HAp samples, the appearance of surface porosity in the scaffold, and surface cracking. Swelling testing demonstrated an increase in swelling ratio with longer agitation time, indicating improved hydrophilic properties of the scaffold. However, longer agitation time was also associated with a decrease in the self-fitting ability of the scaffold. The PLA scaffold endured six cycles of compression and recovery before failure, with a recovery rate of 97-99%. In contrast, the PLA/HAp scaffold failed after two cycles of compression and recovery, with a recovery rate of 90-91% due to HAp intrusion into the strut cross-section. In summary, adding HAp to PLA-based scaffolds enhances biocompatibility and bioactivity. The optimal condition is 1% w/v HAp-1 hour, providing a promising solution for regenerative medicine and tissue engineering applications.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simarmata, Benjamin Wijaya
Abstrak :
Pengembangan rekayasa jaringan pada makhuk hidup berkembang sangat pesat. Berbagai metode dan bahan telah diteliti untuk mencari parameter dan metode terbaik untuk menghasilkan rekayasa jaringan. Terdapat kesulitan dalam proses pembuatan perancah tulang (bone scaffold) akibat desain tulang yang kompleks, sehingga pada penelitian ini dilakukan sintesis perancah tulang menggunakan 3D-Printing (3DP) untuk menghasilkan perancah tulang dengan ukuran porositas yang seragam dan terhubung dengan baik agar dapat mendukung pertumbuhan jaringan sel tulang. Penelitian ini menggunakan polylactic acid dan polyamide66-carbon filler dengan tujuan untuk mengetahui pengaruh persentase pengisi (infill percentage) pada 3DP sebesar 40%, 50% dan 60% terhadap kekuatan mekanik dan laju degradasi. Kenaikan persentase pengisi akan menghasilkan nilai kekuatan tekan yang tinggi, namun memiliki ukuran porositas yang rendah. Analisis laju degradasi dilakukan menggunakan media r-SBF dengan pengamatan 7 dan 14 hari. Spesimen dengan porositas tinggi akan memiliki laju degradasi yang tinggi. PLA dengan pengisi 40% memiliki persentase degradasi tertinggi 5.5% dengan waktu perendaman 14 menindikasikan terjadinya degradasi menyeluruh (bulk degradation), sedangkan yang terendah pada pengisi 60% PA66-CF 7 hari sebesar 0,85 % mengindikasikan terjadi erosi permukaan (surface erosion). Penggunaan PA66-CF dapat meningkatkan proses pengikatan mineral kalsium (Ca) dan fosfor (P) yang berguna saat proses penyembuhan tulang. ......The development of tissue engineering in living humans is growing very rapidly. Various methods and materials have been researched to find the best parameters and methods to produce tissue engineering. There are difficulties in the process of making bone scaffolds due to the complex design of the bones, so in this research, a bone scaffold was synthesized using 3D-Printing (3DP) to produce bone scaffolds with uniform porosity size and well connected to support growth bone cells. This study used polylactic acid and polyamide66-carbon filler to determine the effect of 40%, 50% and 60% infill percentage on 3DP on mechanical strength and degradation rate. Increasing the percentage of filler will result in a high compressive strength value, but has low porosity size. Rate of degradation was carried out using r-SBF with observations of 7 and 14 days. Specimens with high porosity have a high rate of degradation. PLA with 40% filler has the highest degradation percentage of 5.5% with an immersion time of 14 indicating bulk degradation, while the lowest at 60% PA66-CF 7 days at 0.85% indicates surface erosion. PA66-CF can increase the binding process of calcium (Ca) and phosphorus (P) minerals which are useful during the bone healing process.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nindya Aprilia Alief
Abstrak :

Perkembangan additive manufacturing dan/atau 3D printing yang sangat pesat tidak hanya memengaruhi bidang manufaktur saja tetapi turut serta memberi pengaruh terhadap bidang kesehatan. Hal ini ditunjukkan dengan mulainya 3D printing diperkenalkan secara klinis untuk pengembangan biomaterial dan biofabrikasi. Adapun keberadaan alat fabrikasi 3D printing, terutama Fused Deposition Modelling (FDM), semakin mudah dijumpai. Sehingga, 3D printing ini menjadi teknologi yang semakin bernilai terutama untuk menghadapi era yang serba cepat. 4D printing merupakan konsep dimana fabrikasi struktur dilakukan secara lapis dan kemudian mengalami perubahan bentuk pasca pemberian stimulus eksternal. Konsep tersebut turut memiliki peluang untuk diimplementasikan terutama pada aplikasi biomedik. Sehingga, diharapkan bahwa 4D printing dapat mengoptimalkan fabrikasi dan pengaplikasian alat kesehatan saat perawatan dilakukan. Di samping itu, Polylactic acid (PLA) sebagai salah satu polimer yang populer digunakan dalam struktur 4D printing memiliki karakteristik yang tepat untuk aplikasi tersebut. Dengan demikian, agar dapat mengetahui konsistensi hasil fabrikasi dan fenomena yang terjadi pada struktur 4D printing dengan material PLA, kalibrasi alat fabrikasi FDM serta perancangan dan fabrikasi struktur dilakukan. Kedua hal tersebut mengindikasikan bahwa parameter proses yang lebih rinci dapat menghasilkan struktur yang sesuai dengan desain. Selain itu, struktur yang dihasilkan memiliki kemampuan untuk bertransformasi secara melengkung pada dua dimensi (bending 2D).

 


The rapid development of additive manufacturing and/or 3D printing not only affects manufacturing sector but also giving influence towards healthcare field. This is indicated by the beginning of 3D printing introduced clinically for the development of biomaterials and bio fabrication. The presence of 3D printing fabrication machine, especially the Fused Deposition Modelling (FDM) printer, even easier to find. This makes the 3D printing becomes increasingly valuable technology while facing this fast-paced era. 4D printing is a fabrication concept by building the structure layer by layer and then undergoes such a shape transformation due to external stimulus. The concept also has a chance to be applied in biomedical application. Therefore, it is expected that 4D printing could optimize the fabrication and application of medical devices when treatment is carried out. In addition, Polylactic acid (PLA), one of the popular polymers used in the 4D printing, has excellent characteristics for the application. Thus, in order to know the consistency of fabrication results and the phenomena that occur in the PLA 4D printed structure, the calibration of FDM fabrication tools, structural design and fabrication is conducted. Both of those indicate that more detailed process parameters can produce structures that are in accordance with the design. In addition, the resulting structure has the ability in order to transform in a curved manner (bending 2D).

2019
T53139
UI - Tesis Membership  Universitas Indonesia Library
cover
Ilham Hadi Ismoyo
Abstrak :
ABSTRAK 3D Printing belakangan ini telah menjadi salah satu pilihan terbaik untuk memanufaktur suatu produk karena kemampuannya untuk menghasilkan bentuk yang kompleks dengan biaya yang tergolong murah. Selain itu, pemilihan material dalam proses manufaktur merupakan proses penting yang harus dilaksanakan. Dengan memadukan Thermoplastic Polyurethane (TPU) dan Polylactic Acid (PLA) filamen, diharapkan dapat menghasilkan material baru dengan properti yang lebih tinggi dibandingkan material aslinya. Kedua material ini tergolong sebagai material yang biodegradable dan biocompatible yang aman saat berhubungan langsung dengan makhluk hidup. Dibandingkan dengan Polylactic Acid, Thermoplastic Polyurethane memiliki elongation at break yang lebih tinggi. Jadi, dengan menggabungkan dua material ini menggunakan struktur komposit untuk metode 3D Printing yaitu sistem penguncian dengan mencetak material sisi demi sisi, material baru akan dihasilkan. Komposisi TPU dan PLA adalah TPU/PLA: 10%/90%; TPU/PLA: 20%/80%; TPU/PLA: 30%/70%; TPU/PLA: 35%/75%, TPU/PLA: 40%/60% secara berurutan. Properti mekanik dari material ini dinilai dari uji Tarik. Hasilnya adalah, Kekuatan Tarik: 45.42033 MPa, 44.73766 MPa, 50.03833 MPa, 48.7633 MPa, dan 51.0130 MPa untuk 10%, 20%, 30%, 35%, and 40% matrix material, berurutan. Elongasi: 18.71%, 16.33%, 17.06%, 16.93%, dan 17.09% untuk 10%, 20%, 30%, 35%, and 40% matrix material, berurutan. Modulus Elastisitas: 421.88 MPa, 420.19 MPa, 485.23 MPa, 462.22 MPa, dan 495.22 MPa untuk 10%, 20%, 30%, 35%, and 40% matrix material, berurutan. Kekuatan Yield: 44.81 MPa, 44.73 MPa, 50.03 MPa, 45.35 MPa, and 50.43 MPa untuk 10%, 20%, 30%, 35%, dan 40% matrix material, berurutan.
ABSTRACT 3D Printing has become one of the best choices for manufacturing a product lately, due to its ability to produce a complex shape with an approximately low cost needed. On the other hand, material selection is always be an important step before doing any manufacturing process. By combining Thermoplastic Polyurethane and Polylactic Acid filament new material with higher properties than the original material is expected and can be one of the best choices of material to produce a medical related product. Both of these material are considered as a biodegradable and biocompatible material that is safe in contact with living issues. Thermoplastic Polyurethane has a higher elongation at break in compare to Polylactic Acid. So by combining these two material using a composite structure for 3D printing method which is the interlocking printing system by printing two different material side by side, a new material is produced. The Thermoplastic Polyurethane compositions are TPU/PLA: 10%/90%, TPU/PLA: 20%/80%, TPU/PLA: 30%/70%, TPU/PLA: 35%/75%, TPU/PLA: 40%/60% respectively. The mechanical properties of this new material were assessed by a tensile test. The results are Ultimate Tensile Strength 45.42033 MPa, 44.73766 MPa, 50.03833 MPa, 48.7633 MPa, and 51.0130 MPa for 10%, 20%, 30%, 35%, and 40% matrix material, respectively. Elongation at Break: 18.71%, 16.33%, 17.06%, 16.93%, and 17.09% for 10%, 20%, 30%, 35%, and 40% matrix material, respectively. Elastic Modulus: 421.88 MPa, 420.19 MPa, 485.23 MPa, 462.22 MPa, and 495.22 MPa for 10%, 20%, 30%, 35%, and 40% matrix material, respectively. Yield Strength: 44.81 MPa, 44.73 MPa, 50.03 MPa, 45.35 MPa, and 50.43 MPa for 10%, 20%, 30%, 35%, and 40% matrix material, respectively.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Juniko Nur Pratama
Abstrak :
Penggunaan plastik konvensional yang terbuat dari minyak bumi atau diebut sebagai petropolimer. Dalam kondisi ini, jumlah minyak bumi yang tersedia didunia semakin habis, sehingga pengembangan plastik yang ramah lingkungan dan terbuat dari bahan alami yang bersifat sustainable sebagai pengganti minyak bumi sangat dibutuhkan. Polylactic acid (PLA) merupakan salah satu material biopolimer yang memiliki sifat mekanik yang sangat baik, tetapi salah satu kekurangannya ialah sifat getas dari PLA, sehingga membutuhkan pemlastis agar PLA memiliki fleksibilitas yang dibutuhkan. Perlakuan panas seperti anilasi juga dibutuhkan untuk memperbaiki sifat mekanik serta meningkatkan derajat kristalinitas dari PLA. Penelitian ini bertujuan untuk mempelajari pengaruh penambahan diethylene glycol dibenzoate dan triacetine terhadap sifat mekanik dan derajat kristalinitas polylactic acid. Sifat mekanik diamati dengan uji UTM dan SEM. Perilaku molekul diamati dengan uji FTIR dan derajat kristalinitas PLA diamati dengan uji DSC. Hasilnya, morfologi perpatahan menunjukkan penambahan pemlastis menjadikan material PLA menjadi ulet. Kemungkinan adanya interaksi molekul antara PLA dengan pemlastis. Triacetine lebih meningkatkan elongasi dibandingkan dengan diethylene glycol dibenzoate. Dan sebaliknya diethylene glycol dibenzoate lebih meningkatkan kristalinitas PLA dibandingkan dengan triacetine. ......The use of conventional plastics that increased dramatically, increase the capacity of local waste volume. In this condition, the development of eco-friendly plastic made from nature and the ability to decompose biologically in a relatively short time is needed. Polylactic acid (PLA) is a biopolymer material that is brittle, so it requires a pemlastis so that PLA has the flexibility required. Heat treatment such as annealing also needed to improve the mechanical properties and increase the degree of crystallinity of PLA. This research aims to study the effect of the addition of diethylene glycol dibenzoate and triacetine on mechanical properties and degree of crystallinity of polylactic acid. Mechanical properties were observed by SEM and UTM test. Molecular behavior observed by FTIR test and the degree of crystallinity of PLA were observed by DSC test. As a result, the fracture morphology shows the addition of pemlastis s to make the PLA a resilient material. The possible existence of molecular interactions between the PLA dan pemlastis. Triacetine further improve elongation compared with diethylene glycol dibenzoate. And conversely diethylene glycol dibenzoate further improve the crystallinity of PLA compared with triacetine.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S66887
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachmat Ferdian
Abstrak :
Kelangkaan minyak bumi yang tidak terbarukan terus mendorong kenaikan produk-produk turunannya, salah satunya adalah plastik. Untuk mencari alternatif dari hal tersebut, dikembangkanlah plastik komposit yang terbuat dari Polylactic Acid (PLA) dengan penambahan serat ijuk diharapkan mempunyai sifat mekanis yang cukup tinggi dan ramah lingkungan. Kompatibilitas dari kedua bahan tersebut menjadi perhatian utama untuk menciptakan material komposit dengan sifat mekanis yang baik. Penelitian ini menggunakan matriks PLA dengan serat ijuk yang dicampur dengan metode pelarutan menggunakan Dichloromethane dan kemudian dicetak menjadi sampel uji tarik dengan metode cetak panas. Variabel yang digunakan adalah fraksi volum penguat 0%; 10%; 20%; 30%; 40% dan 50%, serta modifikasi permukaan serat dengan perlakuan alkali (NaOH) 0,25 M selama 30 menit untuk meningkatkan kompatibilitas serat terhadap matriks. Hasil pengujian menunjukkan penurunan sifat kekuatan tarik dan Modulus Young terhadap fraksi volum penguat dari 0% hingga 50%, yang tidak menunjukkan efek penguatan serat terhadap matriks untuk sampel tanpa modifikasi perrmukaan, sementara nilai elongasi menunjukkan tren peningkatan. Hal ini diakibatkan kompatibilitas yang buruk antara matriks dan serat. Setelah dilakukan modifikasi permukaan serat, terjadi peningkatan dari sifat mekanis komposit tersebut. Hasil pengujian FTIR menunjukkan terjadinya pengurangan lignin dan hemiselulosa yang dapat meningkatkan kompatibilitas matriks dan serat. ...... Petroleum as a non-renewable resources shows price increment for its derivative products, which one of those is plastics. The development for an alternative solution are developed, that is composite material from Polylactic Acid (PLA) which combined with Ijuk (Arenga pinnata) with the main focus in their compatibility to meet the demand for high specific strength and environmetalfriendly material. This research use PLA as a matrices dan Ijuk as a reinforcement, which is solution mixed using Dicholoromethane and then pressed by hot pressing method to formed tensile test specimens. The variations are volume fraction and fiber surface modification. Volume fraction used are 0%; 10%; 20%; 30%; 40% and 50%, while alkali treatment with NaOH 0,25M for 30 minutes is used for surface modification. Tensile test results show the decreament in tensile strength and Young’s Modulus versus fiber addition from 0-50%, while the elongation shows the conversely results, is showing no strengthening effect of fiber to the matrices for untreated composites. This is due to poor compatibility between matrices and fibers. After surface modification, tensile test results show the improvement in the mechanical properties due to elimination of lignin and hemicellulose which increases its compatibility, supported by the FTIR test results.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T34974
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadhil Fabiano Hendis
Abstrak :
Pengembangan kaki palsu bawah lutut merupakan kemajuan penting dalam teknologi perawatan kesehatan, yang menawarkan dukungan dan mobilitas yang sangat diperlukan bagi individu yang telah menjalani amputasi tungkai bawah. Namun, desain prostetik yang ada saat ini sering kali tidak mampu memenuhi kebutuhan pengguna yang beragam, terutama dalam hal keterjangkauan harga. Penelitian ini bertujuan untuk menjembatani kesenjangan ini dengan membuat kaki palsu di bawah lutut yang dioptimalkan untuk aktivitas sehari-hari, dengan fokus pada efektivitas biaya dibandingkan dengan alternatif yang diimpor. Memanfaatkan Autodesk Inventor dan Perangkat Lunak Ansys, proses desain mengintegrasikan prinsip-prinsip biomekanik, meniru bentuk dan fungsionalitas kaki untuk meningkatkan pengalaman pengguna. Analisis kekuatan mekanik komposit yang dikembangkan dijelaskan dalam tugas akhir ini, mulai dari sifat material serat dan matriks hingga prediksi sifat mekanik lamina on-axis [0°] dan off-axis [90°, +45°, dan -45°]. Berdasarkan sifat mekanik lamina on-axis dan off-axis, sifat mekanik laminasi yang dikembangkan dapat diprediksi, serta memprediksi beban maksimum yang dapat ditopang oleh laminasi komposit prepreg polylactic-acid berpenguat serat rami yang dikembangkan, baik dengan menggunakan matriks rata-rata maupun mekanik komposit lengkap. ......The development of a below-knee prosthetic represents a pivotal advancement in healthcare technology, offering indispensable support and mobility to individuals who have undergone lower limb amputations. However, current prosthetic designs often fall short in addressing the diverse needs of users, particularly in terms of affordability. This research aims to bridge this gap by fabricating a below-knee prosthetic optimized for daily activities, with a focus on cost-effectiveness compared to imported alternatives. Utilizing Autodesk Inventor and Ansys Software, the design process integrates biomechanical principles, mimicking the shape and functionality of the foot to enhance user experience. The mechanical strength analysis of the developed composite is described in this final project, starting from the material properties of the fiber and matrix to the prediction of the mechanical properties of on-axis [0°] and off-axis [90°, +45°, and -45°] lamina. Based on the mechanical properties of the on-axis and off-axis lamina, the mechanical properties of the developed laminate can be predicted, as well as forecasting the maximum load that can be sustained by the developed composite laminate of ramie fiber-reinforced polylactic-acid prepreg, either using the average matrix or complete composite mechanics.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imam Prabowo
Abstrak :
ABSTRAK Dewasa ini masalah pencemaran yang disebabkan material petropolimer menjadi perhatian banyak kalangan. Penggunaan material ramah lingkungan sudah mulai dikembangkan. polylactid acid dan serat ijuk adalah salah satu dari material tersebut. Penggunaan kedua material tersebut diharapkan akan mengurangi dampak pencemaran lingkungan. Penelitian ini menggunakan kedua jenis material tersebut. Masalah yang menjadi perhatian adalah kompatibilitas antara keduanya. Untuk mengatasi masalah tersebut dilakukan modifikasi permukaan alkalinisasi. Alkalinisasi dengan larutan NaOH 0,25 M selama 30 menit diharapkan dapat meningkatkan kompatibilitas antara serat terhadap matriks. Jika kompatibilitas meningkat maka sifat mekanik akan bertambah. Hasil pengujian menunjukan bahwa terjadi peningkatan sifat mekanik hingga fraksi volum serat sebesar 20% kemudian mengalami penurunan lalu kembali mengalami kenaikan pada fraksi volum serat 40%. Sifat mekanik menunjukan kenaikan pada komposit dengan serat yang telah dilakukan alkalinisasi. Hal ini diakibatkan karena meningkatnya kompatibilitas.
ABSTRACT Today, the pollution caused non-degradable material has attracted many researcher to solve this problem. The development of environmental-friendly material are already being used. Polylactid acid and ijuk fiber is one of the material. This material is expected to reduce the impact of environmental pollution. This study uses two types of these materials. The problem is compatibility between them. Alkalization is method to modify surface to solve this problem. Alkalization with 0.25 M NaOH solution for 30 minutes is expected to improve the compatibility between the fibers of the matrix. If compatibility increases the mechanical properties will increase. The tensile test results showed that an increase in the mechanical properties of fiber volume fractions until 20% then decreased and increased again to volume fraction 40%. Mechanical properties shows an increase after alkalization. It is caused due to the increased compatibility.
2014
S54299
UI - Skripsi Membership  Universitas Indonesia Library