Aseptic loosening and infection are the two major causes for premature orthopedic implant failure. One of the strategies to prevent both scenarios is by modifying surface of orthopedic implant. The surface should have minimum surface roughness with nano topography. Plasma electrolytic polishing is a finishing process known for its ability to provide highly smooth and glossy surface. The two variables are electrolyte composition and polishing time. Surface roughness is measured using surfcom roughness contouring detector and surface topography is observed using SEM. The result of surface roughness measurement shows lowest and highest surface roughness are at 0,0889 µm and 0,6281 µm. SEM observation shows crater-like nanostructure with pits and ridges with electrolyte comprised of H3PO4, NaClO4, and HF meanwhile nanotructures of pits on top of smooth surface is available with electrolyte comprised of ethylene glycol and NH4F and electrolyte comprised of NaCl. The increase of polishing time shows smoothing effects on orthopedic implant surfaces especially on 90 and 120 s. Increase in hardness of polished samples indicates the presence of oxide layer in the surface. Polished samples are free from remainder of electrolyte therefore preventing possibility of allergic reaction or contamination of substance that is toxic for the body.