Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Andika Mardianto
Abstrak :
Biofuel merupakan alternatif yang sangat potensial sebagai bahan bakar fosil. Hidrodeoksigenasi trigliserida menjadi salah satu metode yang dapat digunakan dalam pembuatan biofuel. Penelitian ini akan memperlihatkan reaksi hidrodeoksigenasi pada trigliserida dengan reaktor tangki berpengaduk menggunakan katalis Ni-Cu/ZrO2. Penelitian ini memiliki tujuan untuk mengetahui pengaruh dari kecepatan stirrer dengan nilai 500, 600, 700 dan 800 RPM serta penggunaan pirolisat PP sebagai pelarut terhadap yield dan komposisi produk biofuel. Reaksi hidrodeoksigenasi berlangsung pada temperatur 3600C, tekanan gas H2 14 bar dan waktu reaksi 4 jam. Produk biofuel akan dianalisis dengan metode FTIR dan GCMS yang digunakan untuk mengetahui komposisi produk, ikatan kimia, dan jalur reaksi yang terjadi. Hasil penelitian menunjukkan bahwa semakin tinggi kecepatan stirrer menyebabkan yield biofuel naik namun efisiensi HDO turun. Pada kondisi kecepatan stirrer tinggi diperkirakan efek steric hindrance sangat tinggi akibat dari solubilitas H2 tinggi sehingga adsorpsi pada trigliserida menjadi sulit terjadi. Hasil GCMS menunjukkan bahwa produk hidrokarbon dengan panjang 18 dan 16 karbon banyak dijumpai sehingga jalur reaksi hidrodeoksigenasi dominan terjadi. Penggunaan pirolisat PP memberikan akses transfer massa yang lebih baik bagi umpan dan katalis, terbukti dengan yield yang naik hingga 66,7% dari kondisi tanpa pirolisat PP dan meningkatkan konversi. ......Biofuel is a promising alternative as substitute of fossil-based fuel. Biofuel can be synthetized from various method, one of them is hydrodeoxygenation of triglycerides. This research will show the hydrodeoxygenation reaction of triglyceride in stirred tank reactor using Ni-Cu/ZrO2 catalyst. The objective of this research is to obtain the effect of stirring rate from 500, 600, 700 and 800 RPM also obtained the effect of pyrolysate polypropylene as substitution solvent in yield and composition of biofuel. The reaction is operated at 3600C, 14 bar H2, and reaction time 4 hour. Biofuel products were analyzed using FTIR and GCMS to determine the product composition, chemical bond, and reaction pathway. From the GCMS data, with increase of stirring rate caused the biofuel yield is increase but the HDO efficiency decrease. In the high stirring rate, it is estimated that the steric hindrance is high due to the high solubility of H2 that caused the difficulty to adsorption of triglycerides. The GCMS data show that the dominance of C-16 and C-18 hydrocarbon in the product that determined the main pathway reaction is hydrodeoxygenation. The pyrolisate PP solvent giving better mass transfer access to triglycerides and catalyst, that raised the biofuel product yield to 66,7% from the condition without pyrolysate PP and increased the conversion rate.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafira Hakim Yanewati
Abstrak :
Crude Palm Oil (CPO) dapat diproses melalui pirolisis menghasilkan bio-oil yang membutuhkan upgrading untuk mengubah bio-oil menjadi biofuel salah satunya melalui hidrodeoksigenasi (HDO). Penelitian lanjut mengenai pengaruh tekanan gas hidrogen (H2) terhadap reaksi HDO dengan komponen umpan olahan CPO serta pirolisat Polypropylene (PP) termal dilakukan untuk meningkatkan pemahaman komprehensif terhadap variabel reaksi HDO pada produksi biofuel dengan metode umpan gas H2 dan pelarut yang berbeda. HDO katalitik campuran 50% Refined Bleached Deodorized Palm Oil (RBDPO) dan 50% pirolisat PP termal- juga berperan sebagai pelarut- dengan katalis Ni-Cu/ZrO2 dilakukan pada variasi tekanan 8-14 bar gas H2 menggunakan reaktor hidrogenasi self-induced impeller. Katalis Ni-Cu/ZrO2 hasil preparasi penelitian berukuran mesopori dengan ukuran kristal 33,95 nm, luas permukaan spesifik 8,04 m2/g, dan konsentrasi situs basa sebesar 0,38 mmol/g memiliki stabilitas termal yang rendah serta interaksi Ni dengan metal-oxide lemah karena keberadaan pengotor dan Ni-Cu yang kurang terimpregnasi pada pengemban ZrO2. Tekanan gas H2 memengaruhi perubahan komposisi ke arah biodiesel dengan peningkatan komposisi alkana dan olefin serta penurunan komposisi sikloalkana, alkohol, asam karboksilat, dan keton sepanjang 10 - 14 bar gas H2 di samping keberadaan data outlier pada 8 bar gas H2. Yield fraksi cair maksimal 55-65% dengan peningkatan yield solid campuran wax dan sludge dari komponen umpan serta penurunan yield NCG seiring peningkatan tekanan gas H2 didapatkan. Rasio komponen PP dan RBDPO sebagai umpan pada reaksi HDO menghasilkan yield biofuel tertinggi pada 50% PP dan 50% RBDPO. Keuntungan kemampuan dispersi partikel gas H2 pada self-inducing impeller reaktor HDO tidak dapat menanggulangi rendahnya solubilitas gas H2 pada pelarut pirolisat PP termal. ......Crude Palm Oil (CPO) can be processed through pyrolysis to produce bio-oil which requires upgrading to convert bio-oil into biofuel, one of which is through hydrodeoxygenation (HDO). Further research on the effect of hydrogen gas pressure (H2) on HDO reactions with processed CPO feed components and thermal Polypropylene (PP) pyrolyzate was carried out to improve a comprehensive understanding of HDO reaction variables in biofuel production with H2 gas feed methods and different solvents. The catalytic HDO mixture of 50% Refined Bleached Deodorized Palm Oil (RBDPO) and 50% thermal PP pyrolyzate- also acts as a solvent- with a Ni-Cu/ZrO2 catalyst carried out at a pressure variation of 8-14 bar H2 gas using a self-induced impeller hydrogenation reactor. The Ni-Cu/ZrO2 catalyst as a result of the research preparation is mesoporous with a crystal size of 33.95 nm, a specific surface area of ​​8.04 m<2/g, and a base site concentration of 0.38 mmol/g. It has low thermal stability and the interaction of Ni with metal. -oxide is weak due to the presence of impurities and poorly impregnated Ni-Cu on the support. The pressure of H2 gas affects the composition change towards biodiesel by increasing the composition of alkanes and olefins and decreasing the composition of cycloalkanes, alcohols, carboxylic acids, and ketones along 10 - 14 bar of H2 gas in addition to the presence of outlier data at 8 bar of H2 gas. Maximum liquid fraction yield is 55-65% with an increase in yield of solid mixture of wax and sludge from the feed component and a decrease in NCG yield as H2 gas pressure increases. The ratio of PP and RBDPO components as feed in the HDO reaction resulted in the highest biofuel yields at 50% PP and 50% RBDPO. The advantage of H2 gas particle dispersion ability in the self-inducing impeller of the HDO reactor cannot overcome the low solubility of H2 gas in the thermal PP pyrolyzate solvent.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library