Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19 dokumen yang sesuai dengan query
cover
Nicholas Ramos Richardo
Abstrak :
Pendeteksian topik adalah suatu proses untuk menentukan suatu topik dalam teks dengan menganalisis kata di dalam teks tersebut. Pendeteksian topik dapat dilakukan dengan membaca isi dari teks tersebut. Namun, cara ini semakin sulit apabila data yang dimiliki semakin besar. Memanfaatkan metode machine learning dapat menjadi alternatif dalam menangani data yang berjumlah besar. Metode clustering adalah metode pengelompokkan data yang mirip dari suatu kumpulan data. Beberapa contoh metode clustering adalah K-Means, Fuzzy C-Means (FCM), dan Eigenspaced-Based Fuzzy C-Means (EFCM). EFCM adalah metode clustering yang memanfaatkan metode reduksi dimensi Truncated Singular Value Decomposition (TSVD) dengan metode FCM (Murfi, 2018). Dalam pendeteksian topik, teks harus direpresentasikan kedalam bentuk vektor numerik karena model clustering tidak dapat memproses data yang berbetuk teks. Metode yang sebelumnya umum digunakan adalah Term-Frequency Inversed Document Frequency (TFIDF). Pada tahun 2018 diperkenalkan suatu metode baru yaitu metode Bidirectional Encoder Representations from Transformers (BERT). BERT merupakan pretrained language model yang dikembangkan oleh Google. Penelitian ini akan menggunakan model BERT dan metode clutering EFCM untuk masalah pendeteksian topik. Kinerja performa model dievaluasi dengan menggunakan metrik evaluasi coherence. Hasil simulasi menunjukkan penentuan topik dengan metode modifikasi TFIDF lebih unggul dibandingkan dengan metode centroid-based dengan dua dari tiga dataset yang digunakan metode modifikasi TFIDF memiliki nilai coherence yang lebih besar. Selain itu, BERT lebih unggul dibandingkan dengan metode TFIDF dengan nilai coherence BERT pada ketiga dataset lebih besar dibandingkan dengan nilai coherence TFIDF. ......Topic detection is a process to determine a topic in the text by analyzing the words in the text. Topic detection can be done with reading the contents of the text.However, this method is more difficult when bigger data is implemented. Utilizing machine learning methods can be an alternative approach for handling a large amount of data. The clustering method is a method for grouping similar data from a data set. Some examples of clustering methods are K-Means, Fuzzy C-Means (FCM), and Eigenspaced-Based Fuzzy C-Means (EFCM). EFCM is a clustering method that utilizes the truncated dimension reduction method Singular Value Decomposition (TSVD) with the FCM method (Murfi, 2018). In topic detection, the text must be represented in numerical vector form because the clustering model cannot process data in the form of text. The previous method that was most commonly used is the Term-Frequency Inverse Document Frequency (TFIDF). In 2018 a new method was introduced, namely the Bidirectional Encoder method Representations from Transformers (BERT). BERT is a pretrained language model developed by Google. This study will use the BERT model and the EFCM clustering method for topic detection problems. The performance of the model is evaluated using the coherence evaluation metric. The simulation results show that modified TFIDF method for topic determination is superior to the centroid-based method with two of the three datasets used by modified TFIDF method having a greater coherence value. In addition, BERT is superior to the TFIDF method with the BERT coherence value in the three datasets greater than the TFIDF coherence value.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robertus Agung Pradana
Abstrak :
Pendeteksian topik adalah suatu proses yang digunakan untuk menganalisis kata-kata pada suatu koleksi data tekstual untuk menentukan topik-topik yang ada pada koleksi tersebut, bagaimana hubungan topik-topik tersebut satu sama lainnya, dan bagaimana mereka berubah dari waktu ke waktu. Metod (FCM) merupakan metode yang sering digunakan pada masalah pendeteksian topik. FCM dapat mengelompokkan dataset ke beberapa kelompok dengan baik pada dataset dengan dimensi yang rendah, namun gagal pada dataset yang berdimensi tinggi. Untuk mengatasi permasalahan tersebut, dilakukan reduksi dimensi pada dataset sebelum dilakukan pendeteksian topik. Pada penelitian ini digunakan Convolutional Autoencoder dalam reduksi dimensi pada dataset. Oleh sebab itu, metode yang digunakan pada penelitian ini dalam pendeteksian topik adalah metode Convolutional-based Fuzzy C-Means (CFCM). Data yang digunakan dalam penelitian ini data coherence pada topik antara metode CFCM dengan satu convolutional layer (CFCM-1CL) dan metode CFCM dengan tiga convolutional layer (CFCM-3CL). Hasil penelitian ini menunjukkan bahwa nilai coherence dari metode CFCM-1CL lebih tinggi dibandingkan metode CFCM-3CL.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Rosaline
Abstrak :
Pendeteksian topik merupakan suatu teknik untuk memperoleh informasi dengan cara mengekstrak topik-topik dari kumpulan data yang sangat besar. Salah satu metode yang digunakan untuk pendeteksian topik adalah metode clustering, yaitu Fuzzy C-Means (FCM). Namun, kinerja dari FCM menjadi buruk saat harus melakukan clustering pada data yang berdimensi tinggi. Kelemahan dari FCM tersebut dapat ditanggulangi dengan cara melakukan reduksi dimensi. Pada penelitian ini, digunakan suatu metode deep learning, yaitu Deep Autoencoders (DAE), untuk mereduksi dimensi dari kumpulan data. Metode FCM clustering dengan reduksi dimensi DAE ini disebut Deep Autoencoders-Based Fuzzy C-Means (DFCM). Metode DFCM dibagi menjadi dua tahapan, yakni mereduksi dimensi kumpulan data yang berdimensi tinggi menggunakan Deep Autoencoders, dan melakukan FCM clustering pada data yang telah direduksi. Hasil dari metode DFCM adalah topik-topik. Topik-topik tersebut dievaluasi menggunakan nilai coherence. Pada penelitian ini, dibangun dua metode DFCM, yaitu FCM berbasis DAE dengan satu lapisan tersembunyi (DFCM-single hidden layer) dan FCM berbasis DAE dengan multi lapisan tersembunyi (DFCM-multi hidden layers). Hasil dari kedua metode ini menunjukkan bahwa topik-topik pada DFCM-single hidden layer memiliki nilai coherence lebih tinggi dari topik-topik pada DFCM-multi hidden layers. ......Topic detection is a technique to find out information by extracting topics from big data. One method used for topic detection is the clustering method, namely Fuzzy C-Means (FCM). However, the performance of FCM becomes worse when clustering on highdimensional data. That weakness is resolved by dimensional reduction. In this research, deep learning method is used to reduce the dimensions of the data set, namely Deep Autoencoders (DAE). FCM clustering method with DAE dimensional reduction is called Deep Autoencoders-Based Fuzzy C-Means (DFCM). DFCM is divided into two parts. First, reducing the dimensions of high-dimensional data collection using Deep Autoencoders. Second, performing FCM clustering on the reduced data. Results of DFCM are topics. These topics are evaluated using the value of coherence. In this research, two DFCM methods were built, namely DAE with one hidden layer based FCM (DFCM-single hidden layer) and DAE with multi-hidden layers based FCM (DFCMmulti hidden layers). The results of these two methods show that the topics in DFCMsingle hidden layer have a higher coherence value than the topics in DFCM-multi hidden layers.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rilo Chandra Pradana
Abstrak :

Pendeteksian topik adalah teknik untuk memperoleh topik-topik yang dikandung oleh suatu data tekstual. Salah satu metode untuk pendeteksian topik yaitu dengan menggunakan clustering. Namun, secara umum metode clustering tidak menghasilkan cluster yang efektif bila dilakukan pada data yang berdimensi tinggi. Sehingga untuk memperoleh cluster yang efektif perlu dilakukan reduksi dimensi pada data sebelum dilakukan clustering pada ruang fitur yang berdimensi lebih rendah. Pada penelitian ini, digunakan suatu metode bernama Deep Embedded Clustering (DEC) untuk melakukan pendeteksian topik. Metode DEC bekerja untuk mengoptimasi ruang fitur dan cluster secara simultan. Metode DEC terdiri dari dua tahap. Tahap pertama terdiri dari pembelajaran autoencoder untuk memperoleh bobot dari encoder yang digunakan untuk mereduksi dimensi data dan k-means clustering untuk memperoleh centroid awal. Tahap kedua terdiri dari penghitungan soft assignment, penentuan distribusi bantuan untuk menggambarkan cluster di ruang data, dan dilanjutkan dengan backpropagation untuk memperbarui bobot encoder dan centroid. Dalam penelitian ini, dibangun dua macam model DEC yaitu DEC standar dan DEC without backpropagation. DEC without backpropagation adalah DEC yang menghilangkan proses backpropagation pada tahap kedua. Setiap model DEC pada penelitian ini akan menghasilkan topik-topik. Hasil tersebut dievaluasi dengan menggunakan coherence. Dari penelitian ini dapat dilihat bahwa model DEC without backpropagation lebih baik daripada DEC standar bila dilihat dari waktu komputasi dengan perbedaan coherence antara keduanya yang tidak terlalu jauh.


Topic detection is a technique for obtaining the topics that are contained in a textual data. One of the methods for topic detection is clustering. However, generally clustering does not produce an effective cluster when it is done by using data with high dimension. Therefore, to get an effective cluster, dimensionality reduction is needed before clustering in the lower dimensional feature space. In this research we use DEC method for topic detection. DEC method is used to optimize the feature space and cluster simultaneously. DEC is divided into two stages. The first stage consists of autoencoder learning that obtains the weights of the encoder that used for dimension reduction and k-means clustering to get the initial centroid. The second stage consists of the soft assignment calculation, computing the auxiliary distribution that represents the cluster in the data space, and backpropagation to update the encoder weights and the centroid. In this research, two DEC models are built, namely the standard DEC and DEC without backpropagation. DEC without backpropagation is the DEC which eliminate the backpropagation process in the second stage. Every DEC models will produce topics. The results are evaluated using the coherence measure. From this research, it can be seen that DEC without backpropagation is better than standard DEC in terms of computation time with a slight difference in coherence measure.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Triyana Muliawati
Abstrak :
ABSTRAK
Seiring perkembangan teknologi informasi dan komunikasi, pemenuhan kebutuhan informasi dapat diperoleh melalui media sosial, seperti Twitter. Banyaknya pengguna internet telah memicu aliran data yang sangat besar dan cepat, sehingga membuat analisis secara manual sulit atau bahkan tidak mungkin dilakukan. Metode otomatis diperlukan untuk menganalisis data tersebut yang salah satunya yaitu dengan topic detection and tracking (TDT). Suatu metode alternatif laindari TDT untuk masalah pendeteksian topik selain latent dirichlet allocation (LDA) adalah fuzzy clustering dengan menggunakan algoritma fuzzy Cmeans (FCM). FCM pada pendeteksian topik dapat memenuhi asumsi bahwa suatu dokumen pada Twitter dapat terdiri dari beberapa topik. FCM bekerja cukup baik di dimensi data yang rendah, akan tetapi gagal dalam dimensi data yang tinggi. Oleh karena itu, dibutuhkan suatu metode untuk mereduksi dimensi ruang eigen yang tinggi ke dimensi yang lebih rendah. Salah satu metodenya adalah singular value decomposition (SVD) dengan menggunakan truncated SVD. Pada penelitian ini, dilakukan prosestruncated SVD kemudian FCM yang dinamakanfuzzy C-means pada ruang eigen (Eigen FCM). Hasil akurasi dari metode ini menunjukkan peningkatan lebih baik dibandingkan FCM dan LDA pada pendeteksian topik.
ABSTRACT
As the information and communication technology developed, the fulfillment of information can be obtained through social media, like Twitter. The enormous number of internet users has triggeredfast and large data flow, thus making the analysis manually is difficult, or even impossible. The automated methods for data analysis is needed now, one of which is the topic detection and tracking (TDT). An alternative method other than TDT fortopic detection problemother than latent dirichlet allocation (LDA) is a fuzzy clustering algorithms using fuzzy C-means (FCM). FCM in topic detection meet the assumption that a document on Twitter can consists of several topics. FCM works pretty well in low-dimensional data, but fail in high-dimensional data. Therefore, we need a method to reduce the dimension of the high-dimensional eigenspaceinto lower dimension. One method to do that is the singular value decomposition (SVD) using truncated SVD. This papercarried out the truncated SVD process then FCM called fuzzy C-means on the eigenspace (Eigen FCM). The results of the accuracy of this method shows an increase is better than FCM and LDA on topic detection.
2016
T45625
UI - Tesis Membership  Universitas Indonesia Library
cover
Muktiari
Abstrak :
ABSTRAK
Pendeteksian topik adalah metode praktis untuk menemukan topik pada suatu koleksi dokumen. Salah satu metodenya adalah metode berbasis clustering yang mana centroid merepresentasikan topik contohnya eigenspace ndash; based fuzzy c ndash; EFCM . Proses clustering pada metode EFCM diimplementasikan pada dimensi yang lebih kecil yaitu ruang eigen. Sehingga akurasi dari proses clustering memungkinkan berkurang. Pada tesis ini, penulis menggunakan metode kernel sehingga proses clustering tersebut dapat diimplentasikan pada dimensi yang lebih tinggi tanpa mentransformasikan data ke ruang tersebut. Simulasi penulis menunjukkan bahwa kernelisasi ini meningkatkan akurasi dari EFCM berdasarkan skor interpretability pada berita online berbahasa Indonesia.
ABSTRACT
Topic detection is practical methods to find a topic in a collection of documents. One of the methods is a clustering based method whose centroids are interpreted as topics, i.e., eigenspace based fuzzy c means EFCM . The clustering process of the EFCM method is performed in a smaller dimensional Eigenspace. Thus, the accuracy of the clustering process may be reduced. In this thesis, we use the kernel method so that the clustering process is performed in a higher dimensional space without transforming data into that space. Author simulations show that this kernelization improves the accuracies of EFCM in term of interpretability scores for Indonesian online news.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50790
UI - Tesis Membership  Universitas Indonesia Library
cover
Angga Pratama
Abstrak :
ABSTRAK
Perkembangan teknologi khususnya internet berkembang begitu pesat dewasa ini. Oleh karena itu, arus informasi meningkat begitu cepat yang menyebabkan informasi diperoleh sangat banyak. Media sosial pun menjadi salah satu sarana penyedia informasi, salah satunya adalah Twitter. Pendeteksian topik menjadi suatu kebutuhan bagi masyarakat untuk mengetahui hal-hal yang bicarakan pada waktu tertentu. Maka, dibutuhkan suatu cara yang cepat dan tepat untuk mendapatkan topik dari tweet yang terkirim pada Twitter. Dengan jumlah dokumen yang sangat besar, diperlukan suatu metode otomatis. Salah satu metode otomatis untuk pendeteksian topik adalah model yang berbasis faktorisasi matriks yaitu Non-negative Matrix Factorization (NMF). Metode NMF yang digunakan pada penelitian ini difokuskan pada wilayah Jakarta dan sekitarnya guna melihat topik yang dibahas masyarakat Jakarta dan sekitarnya pada kurun waktu tertentu. Hasil yang didapatkan lewat metode NMF ini selanjutnya akan dievaluasi dengan cara melihat tingkat akurasi yang dihasilkan lalu disimulasikan dalam bentuk tren berdasarkan frekuensi masing-masing topik.
ABSTRACT
Development of technology spesifically in internet grows so fast nowadays. Therefore, flow of information increase rapidly that leads information to be obtained so much. Social media become the one information provider, such as Twitter. Topic detection become a public society to know the things that being discussed at a certain time. Hence, needed a quick and precise method to obatain topic from tweet posted from twitter. With large amount of document, needed an automaticly method. One of automaticly method that based on matrix factorization is Non-negative Matrix Factorization as usually being called as NMF. Non-negative matrix factorization method on this research focused on region of Jakarta in order to know what are being discussed by society there in a period of time. The result have been obtain with NMF method will be evaluated by calculating the accuracy and finally will be simulated in the form of trend plot based on the frequency of the topic.
2016
S65611
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deo Lahara
Abstrak :
ABSTRAK
Pendeteksian topik topic detection adalah suatu proses yang digunakan untuk menganalisis kata-kata pada suatu koleksi data tekstual untuk menentukan topik-topik yang ada pada koleksi tersebut. Pendeteksian topik pada dokumen yang sangat besar sulit dilakukan secara manual sehingga dibutuhkan metode otomatis. Masalah pendeteksian topik secara otomatis dikenal dengan istilah topic detection and tracking TDT . Suatu metode alternatif TDT untuk masalah pendeteksian topik adalah fuzzy C-means FCM. Pada metode fuzzy C-means, umumnya pusat cluster ditentukan secara acak atau inisialisasi random. Namun, terkait dengan masalah dimensi yang tinggi pada inisialisasi random akan menyebabkan algoritma konvergen ke satu pusat. Sehingga, topik-topik yang dihasilkan antara satu dengan yang lainnya sama. Untuk itu, diperlukan metode untuk membuat inisialisasi yang dapat mengatasi masalah tersebut. Salah satu metode inisialisasi yang akan dikembangkan pada penelitian ini adalah metode Singular Value Decomposition SVD . Hasil simulasi menunjukan bahwa metode inisialisasi dapat mengatasi permasalahan fuzzy C-means pada data dimensi yang tinggi sehingga topik-topik yang dihasilkan tidak sama terhadap satu sama lain.
ABSTRAK
Topic detection is a process used to analyze words in a collection of textual data to determine the topics of the collection. Detecting topics on a very large document is hardly done manually so that automatic methods are needed. Automatic method to detect topics in textual documents is known as Topic Detection and Tracking TDT . An alternative method of TDT for topic detection problems is fuzzy C means FCM . In the FCM method, generally the cluster center is random initialization. However, related to the problem of high dimensional random initialization causes the algorithm to converge to one center, it means that all generated topics are similar. For that, a method is needed to create an initialization that resolves the problem. One of the initialization methods that will be developed in this research is Singular Value Decomposition SVD method. The simulation results show that the SVD initialization method can overcome the fuzzy C means problem in the high dimension data so that the resulting topics are not equal to each other.
2017
S69378
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rifky Yusdiansyah
Abstrak :
Pendeteksian topik (Topic detection) adalah suatu proses yang digunakan untuk menganalisis kata-kata pada suatu koleksi data tekstual untuk menentukan topik-topik yang ada pada koleksi tersebut, bagaimana hubungan topik-topik tersebut satu sama lainnya, dan bagaimana mereka berubah dari waktu ke waktu. Metode Fuzzy C-Means (FCM) merupakan metode clustering yang sering digunakan pada masalah pendeteksian topik. Fuzzy C-Means dapat mengelompokkan dataset ke beberapa cluster dengan baik pada dataset dengan dimensi yang rendah, namun gagal pada dataset yang berdimensi tinggi. Untuk mengatasi permasalahan tersebut, dilakukan reduksi dimensi pada dataset sebelum dilakukan pendeteksian topik menggunakan metode FCM. Pada penelitian ini digunakan data tweets akun berita nasional pada sosial media Twitter yang kemudian dilakukan pen-deteksian topik menggunakan metode Random space-based Fuzzy C-Means (RFCM) dan Kernelized Random space-based Fuzzy C-Means (KRFCM). Metode pembelajaran RFCM dan KRFCM terbagi menjadi dua langkah yaitu mereduksi dimensi dataset ke dimensi yang lebih rendah dengan menggunakan random projection dan melakukan metode pem-belajaran FCM pada RFCM dan metode pembelajaran KFCM pada KRFCM. Setelah didapatkan topik-topik, kemudian dilakukan evaluasi dengan menghitung nilai coher-ence pada topik. Nilai coherence yang digunakan pada penelitian ini menggunakan sa-tuan Pointwise Mutual Information (PMI). Penelitian dilakukan dengan membandingkan nilai rata-rata PMI dari RFCM dan KRFCM dengan Eigenspace-based Fuzzy C-Means (EFCM) dan Kernelized Eigenspace-based Fuzzy C-Means (KEFCM). Hasil yang didapatkan menggunakan data tweets akun berita nasional menunjukkan bahwa metode RFCMdan KRFCM menawarkan running time untuk reduksi dimensi yang lebih cepat namun memiliki rata-rata nilai PMI yang lebih kecil dibandingkan rata-rata nilai PMI yang di-hasilkan oleh metode pembelajaran EFCM dan KEFCM.
Topic detection is a process that is used to analyze words in a collection of textual data to determine which topics are in the collection, how the topics relate to each other, and how they change over time. Fuzzy C-Means (FCM) Method is a clustering method that is often used in topic detection problems. Fuzzy C-Means can group datasets into several clusters properly on dataset with low dimensions, but failed on the high dimension dataset. To overcome this problem, a dimension reduction is performed on the previous dataset Topic detection was performed using the FCM method. In this study used data on national news account tweets on Twitter social media which is then detected topics using the Randomspace-based Fuzzy C-Means (RFCM) method Kernelized Randomspace-based Fuzzy C-Means (KRFCM). RFCM learning methods and KRFCM is divided into two steps, namely reducing the dataset dimension to dimensions lower cost by using random projection and learning methods FCM on RFCM and KFCM learning methods on KRFCM. After obtained topics, then conducted an evaluation by calculating the value of coherence on the topic. The coherence value used in this study uses units Pointwise Mutual Information (PMI). Research carried out by comparing the average PMI values ​​of RFCM and KRFCM with Eigenspace-based Fuzzy C-Means (EFCM) and Kernelized Eigenspace-based Fuzzy C-Means (KEFCM). Results obtained using national news account tweets data shows that the RFCM method and KRFCM offers running time for faster dimension reduction however has an average PMI value that is smaller than the average PMI value produced by the EFCM and KEFCM learning methods.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Praditya Nugraha
Abstrak :
Salah satu metode otomatis untuk analisis data tekstual adalah deteksi topik. Fuzzy C- Means di Ruang Eigen (EFCM) adalah metode berbasis soft clustering untuk pendetek- sian topik. Pada Algoritme EFCM adanya reduksi dimensi data awal menjadi lebih kecil. Namun, proses reduksi itu dapat menghilangkan beberapa fitur penting dari data tekstual. Sehingga, akurasi dapat berkurang. Dalam mengatasi hilangnya fitur penting digunakan bantuan Kernelisasi Fuzzy C-Means di Ruang Eigen sehingga proses clustering dapat di- lakukan dalam ruang dimensi yang lebih tinggi. Dalam penelitian ini akan dicek akurasi dari metode EFCM dan KEFCM dan perbandingannya dengan metode standar seperti Latent Dirichlet Allocation (LDA) dan Nonnegative Matrix Factorization (NMF) dalam masalah pendeteksian topik. Simulasi menunjukkan bahwa KEFCM memberikan akurasi yang lebih baik dalam menemukan topik daripada metode standar LDA dan EFCM namun tidak lebih baik dari NMF untuk masalah mendeteksi topik berita online di Twitter.
One of automated methods for textual data analysis is topic detection. Fuzzy C-Means in Eigenspace (EFCM) is a soft clustering-based method for topic detection. In, EFCM Algorithm there is a step to transform high dimensional textual data into lower dimensional data. However, that transformation process may eliminate some important features from the textual data. Therefore, the accuracy may be reduced. To overcome in losing important features Kernelized Fuzzy C-Means in Eigenspace (KEFCM) is needed, so that clustering process can be done in higher dimensional space. In this study the accuracy of EFCM and KEFCM will be evaluated and these methods will be compared by any standard method such as Latent Dirichlet Allocation (LDA) and Nonnegative Matrix Factorization (NMF) for topic detection problem. Simulations show that KEFCM gives better accuracy to find topics than LDA and EFCM method. However, these methods fail to give better results than NMF for the problem of sensing trending topic in online news in Twitter.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>