Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 38 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 1990
S27301
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nicholas Ramos Richardo
"Pendeteksian topik adalah suatu proses untuk menentukan suatu topik dalam teks dengan menganalisis kata di dalam teks tersebut. Pendeteksian topik dapat dilakukan dengan membaca isi dari teks tersebut. Namun, cara ini semakin sulit apabila data yang dimiliki semakin besar. Memanfaatkan metode machine learning dapat menjadi alternatif dalam menangani data yang berjumlah besar. Metode clustering adalah metode pengelompokkan data yang mirip dari suatu kumpulan data. Beberapa contoh metode clustering adalah K-Means, Fuzzy C-Means (FCM), dan Eigenspaced-Based Fuzzy C-Means (EFCM). EFCM adalah metode clustering yang memanfaatkan metode reduksi dimensi Truncated Singular Value Decomposition (TSVD) dengan metode FCM (Murfi, 2018). Dalam pendeteksian topik, teks harus direpresentasikan kedalam bentuk vektor numerik karena model clustering tidak dapat memproses data yang berbetuk teks. Metode yang sebelumnya umum digunakan adalah Term-Frequency Inversed Document Frequency (TFIDF). Pada tahun 2018 diperkenalkan suatu metode baru yaitu metode Bidirectional Encoder Representations from Transformers (BERT). BERT merupakan pretrained language model yang dikembangkan oleh Google. Penelitian ini akan menggunakan model BERT dan metode clutering EFCM untuk masalah pendeteksian topik. Kinerja performa model dievaluasi dengan menggunakan metrik evaluasi coherence. Hasil simulasi menunjukkan penentuan topik dengan metode modifikasi TFIDF lebih unggul dibandingkan dengan metode centroid-based dengan dua dari tiga dataset yang digunakan metode modifikasi TFIDF memiliki nilai coherence yang lebih besar. Selain itu, BERT lebih unggul dibandingkan dengan metode TFIDF dengan nilai coherence BERT pada ketiga dataset lebih besar dibandingkan dengan nilai coherence TFIDF.

Topic detection is a process to determine a topic in the text by analyzing the words in the text. Topic detection can be done with reading the contents of the text.However, this method is more difficult when bigger data is implemented. Utilizing machine learning methods can be an alternative approach for handling a large amount of data. The clustering method is a method for grouping similar data from a data set. Some examples of clustering methods are K-Means, Fuzzy C-Means (FCM), and Eigenspaced-Based Fuzzy C-Means (EFCM). EFCM is a clustering method that utilizes the truncated dimension reduction method Singular Value Decomposition (TSVD) with the FCM method (Murfi, 2018). In topic detection, the text must be represented in numerical vector form because the clustering model cannot process data in the form of text. The previous method that was most commonly used is the Term-Frequency Inverse Document Frequency (TFIDF). In 2018 a new method was introduced, namely the Bidirectional Encoder method Representations from Transformers (BERT). BERT is a pretrained language model developed by Google. This study will use the BERT model and the EFCM clustering method for topic detection problems. The performance of the model is evaluated using the coherence evaluation metric. The simulation results show that modified TFIDF method for topic determination is superior to the centroid-based method with two of the three datasets used by modified TFIDF method having a greater coherence value. In addition, BERT is superior to the TFIDF method with the BERT coherence value in the three datasets greater than the TFIDF coherence value."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Samudra Firdaus
"Pengawasan wilayah teritorial laut perlu dioptimalkan, terutama pada negara kepulauan yang memiliki luas wilayah laut lebih besar dibandingkan luas wilayah daratan. Karena, wilayah tersebut sangat rawan dimasuki oleh kapal pihak asing secara ilegal. Teknologi pengawasan yang umumnya digunakan seperti radar maupun satelit masih memiliki biaya yang mahal, pencitraan mudah terganggu oleh cuaca buruk, serta kesulitan dalam mendeteksi keberadaan kapal akibat efek noise dan cluttering yang disebabkan oleh permukaan laut yang tidak rata. Teknologi baru yang sekarang sedang dikembangkan untuk pendeteksian pihak asing yang masuk dalam wilayah teritorial adalah teknologi jaringan sensor nirkabel JSN.
Skripsi ini telah memformulasikan persamaan JSN dengan 4 node sensor untuk mengestimasi koordinat kapal. Selain itu, telah dibuat pula perangkat lunak berbasis bahasa pemrograman Processing yang mampu menunjukkan hasil pendeteksian kapal. Kemudian telah dirancang sebuah sistem pendeteksi kapal yang mengestimasi arah, kecepatan, serta koordinat kapal berdasarkan persamaan estimasi koordinat kapal JSN dengan 4 node sensor.
Sistem yang dirancang merupakan integrasi perangkat lunak tersebut dan perangkat keras berupa modul XBee sebagai pengirim data, mikrokontroler Arduino, dan akselerometer untuk membaca pergerakan node sensor secara vertikal. Pengujian dilakukan dengan melewatkan sebuah kapal dengan kecepatan tertentu di dalam wilayah pengawasan menggunakan JSN dengan 4 node sensor.
Hasil yang diperoleh, sistem pendeteksian kapal mampu mendeteksi kecepatan, arah, dan koordinat kapal yang direpresentasikan dalam sumbu x dan sumbu y dengan akurasi terbaik yang dapat dilakukan yaitu sebesar 96 untuk pendeteksian kecepatan kapal, 98,85 untuk pendeteksian arah kapal, 98 untuk pendeteksian sumbu x, dan 99,92 untuk pendeteksian sumbu y.

Surveillance of marine territorial areas needs to be optimized, especially in archipelagic countries that have a larger marine area than land area because the area is vulnerable entered by foreign ships illegally. Commonly used surveillance technologies such as radar and satellite still have an excessive cost, imaging is easily disrupted by harsh weather, as well as difficulty in detecting ship presence due to noise and cluttering effects caused by uneven sea levels. Innovative technology that is now being developed for the detection of foreign parties that enter the territory is wireless sensor network technology WSN.
In this research, WSN equation with 4 sensor nodes to estimate the coordinates of the ship has been formulated. In addition, a software based on Processing language that can show the results of ship detection is also made. A ship detecting system that estimates the direction, velocity, and coordinate of the ship based on the WSN ship coordinate estimation equation with 4 sensor nodes has been designed as well.
The designed system is an integration of the software and hardware. The hardware use XBee module as communication device, Arduino as microcontroller, and accelerometer to read vertical sensor node movement. The test is performed by passing a ship at a certain speed within the surveillance area using WSN with 4 sensor nodes.
Results shown that the ship detection system can detect the velocity, direction, and coordinates of the ship represented in the x axis and y axis with the best accuracy of 96 for the detection of ship speed, 98.85 for the detection of ship direction, 98 For the detection of the x axis, and 99.92 for the detection of the y axis.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69790
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akmal
"Dalam perkembangan teknologi saat ini, perlindungan jaringan komputer sangat diperlukan, maka kita membutuhkan sebuah sistem untuk melindunginya jaringan dari serangan, salah satu serangan paling sering di jaringan Komputer adalah DDoS. Proteksi DDoS ini dapat dilakukan dengan cara: menggunakan Supervised Learning atau Unsupervised Learning. Diawasi Pembelajaran adalah suatu metode dimana sistem diberi label data sehingga mampu mengklasifikasikan data uji yang diberikan, dan pembelajaran tanpa pengawasan maka jika data tidak berlabel diberikan, maka sistem harus klasifikasi tanpa bantuan label, keuntungan dari sistem tanpa label apakah sistem mampu mengidentifikasi serangan yang tidak sistem pembelajaran yang aktif. Sistem untuk mendeteksi ini membutuhkan efisiensi
agar dapat merespon dengan cepat terhadap serangan yang dilakukan.
Maka dimungkinkan untuk membuat suatu sistem yang dapat menghilangkan data tersebut tidak ada kemampuan serangan, sistem ini dapat dikonfigurasi dengan menggunakan LSTM. Studi ini mencoba keefektifan Sistem pembelajaran tanpa pengawasan melalui implementasi sistem penghapusan data, eksperimen pada sistem kepunahan data untuk menentukan arsitektur terbaik, dan melakukan modifikasi pada sistem pembelajaran tanpa pengawasan. Hasil penelitian ini menunjukkan efek sistem data terhadap sistem deteksi DDoS dan
potensi keuntungan dan kerugian dari penerapan sistem dilakukan pada kemampuan deteksi sistem DDoS

In today's technological developments, computer network protection
indispensable, then we need a system to protect it network from attacks, one of the most frequent attacks on the network Computers are DDoS. This DDoS protection can be done by: using Supervised Learning or Unsupervised Learning. Supervised Learning is a method in which the system is labeled data so that able to classify the test data given, and unsupervised learning then if unlabeled data is given, then the system must labelless classification, the advantages of the labelless system whether the system is able to identify attacks that are not active learning system. The system to detect this requires efficiency in order to be able to respond quickly to attacks carried out.Then it is possible to create a system that can eliminate data no attack capability, this system can be configured with using LSTM. This study tested the effectiveness Unsupervised learning system through system implementation data deletion, experiment on extinction system data to determine the best architecture, and make modifications to unsupervised learning system. The results of this study indicate the effect of data system against DDoS detection system and potential advantages and disadvantages of implementing the system performed on the DDoS detection capability. system
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robertus Agung Pradana
"Pendeteksian topik adalah suatu proses yang digunakan untuk menganalisis kata-kata pada suatu koleksi data tekstual untuk menentukan topik-topik yang ada pada koleksi tersebut, bagaimana hubungan topik-topik tersebut satu sama lainnya, dan bagaimana mereka berubah dari waktu ke waktu. Metod (FCM) merupakan metode yang sering digunakan pada masalah pendeteksian topik. FCM dapat mengelompokkan dataset ke beberapa kelompok dengan baik pada dataset dengan dimensi yang rendah, namun gagal pada dataset yang berdimensi tinggi. Untuk mengatasi permasalahan tersebut, dilakukan reduksi dimensi pada dataset sebelum dilakukan pendeteksian topik. Pada penelitian ini digunakan Convolutional Autoencoder dalam reduksi dimensi pada dataset. Oleh sebab itu, metode yang digunakan pada penelitian ini dalam pendeteksian topik adalah metode Convolutional-based Fuzzy C-Means (CFCM). Data yang digunakan dalam penelitian ini data coherence pada topik antara metode CFCM dengan satu convolutional layer (CFCM-1CL) dan metode CFCM dengan tiga convolutional layer (CFCM-3CL). Hasil penelitian ini menunjukkan bahwa nilai coherence dari metode CFCM-1CL lebih tinggi dibandingkan metode CFCM-3CL.
Topic detection is a process used to analyze words in a collection of textual data to determine the topics in the collection, how they relate to each other, and how they change from time to time. The Fuzzy C-Means (FCM) method is a clustering method that is often used in topic detection problems. Fuzzy C-Means can group dataset into multiple clusters on low-dimensional dataset, but fails on high-dimensional dataset. To overcome this problem, dimension reduction is carried out on the dataset before topic detection is carried out. In this study, Convolutional Autoencoder (CAE) is used in the reduction of dimensions in the dataset. Therefore, the method used in this research in topics detection is the Convolutional-based Fuzzy C-Means (CFCM) method. The data used in this study tweets national news account data on social media Twitter. CFCM method are divided into two stages, namely reducing the dataset dimension to a lower dimension using CAE and then clustering the dataset by using FCM to obtain topics. After the topics are obtained, an evaluation is done by calculating the value of coherence on the topics obtained. The study was conducted by comparing the coherence value on the topic between the CFCM method with one convolutional layer (CFCM-1CL) and the CFCM method with three convolutional layers (CFCM-3CL). The results of this study indicate that the coherence value of the CFCM-1CL method is higher than the CFCM-3CL method"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Rosaline
"Pendeteksian topik merupakan suatu teknik untuk memperoleh informasi dengan cara mengekstrak topik-topik dari kumpulan data yang sangat besar. Salah satu metode yang digunakan untuk pendeteksian topik adalah metode clustering, yaitu Fuzzy C-Means (FCM). Namun, kinerja dari FCM menjadi buruk saat harus melakukan clustering pada data yang berdimensi tinggi. Kelemahan dari FCM tersebut dapat ditanggulangi dengan cara melakukan reduksi dimensi. Pada penelitian ini, digunakan suatu metode deep learning, yaitu Deep Autoencoders (DAE), untuk mereduksi dimensi dari kumpulan data. Metode FCM clustering dengan reduksi dimensi DAE ini disebut Deep Autoencoders-Based Fuzzy C-Means (DFCM). Metode DFCM dibagi menjadi dua tahapan, yakni mereduksi dimensi kumpulan data yang berdimensi tinggi menggunakan Deep Autoencoders, dan melakukan FCM clustering pada data yang telah direduksi. Hasil dari metode DFCM adalah topik-topik. Topik-topik tersebut dievaluasi menggunakan nilai coherence. Pada penelitian ini, dibangun dua metode DFCM, yaitu FCM berbasis DAE dengan satu lapisan tersembunyi (DFCM-single hidden layer) dan FCM berbasis DAE dengan multi lapisan tersembunyi (DFCM-multi hidden layers). Hasil dari kedua metode ini menunjukkan bahwa topik-topik pada DFCM-single hidden layer memiliki nilai coherence lebih tinggi dari topik-topik pada DFCM-multi hidden layers.

Topic detection is a technique to find out information by extracting topics from big data. One method used for topic detection is the clustering method, namely Fuzzy C-Means (FCM). However, the performance of FCM becomes worse when clustering on highdimensional data. That weakness is resolved by dimensional reduction. In this research, deep learning method is used to reduce the dimensions of the data set, namely Deep Autoencoders (DAE). FCM clustering method with DAE dimensional reduction is called Deep Autoencoders-Based Fuzzy C-Means (DFCM). DFCM is divided into two parts. First, reducing the dimensions of high-dimensional data collection using Deep Autoencoders. Second, performing FCM clustering on the reduced data. Results of DFCM are topics. These topics are evaluated using the value of coherence. In this research, two DFCM methods were built, namely DAE with one hidden layer based FCM (DFCM-single hidden layer) and DAE with multi-hidden layers based FCM (DFCMmulti hidden layers). The results of these two methods show that the topics in DFCMsingle hidden layer have a higher coherence value than the topics in DFCM-multi hidden layers."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rilo Chandra Pradana
"

Pendeteksian topik adalah teknik untuk memperoleh topik-topik yang dikandung oleh suatu data tekstual. Salah satu metode untuk pendeteksian topik yaitu dengan menggunakan clustering. Namun, secara umum metode clustering tidak menghasilkan cluster yang efektif bila dilakukan pada data yang berdimensi tinggi. Sehingga untuk memperoleh cluster yang efektif perlu dilakukan reduksi dimensi pada data sebelum dilakukan clustering pada ruang fitur yang berdimensi lebih rendah. Pada penelitian ini, digunakan suatu metode bernama Deep Embedded Clustering (DEC) untuk melakukan pendeteksian topik. Metode DEC bekerja untuk mengoptimasi ruang fitur dan cluster secara simultan. Metode DEC terdiri dari dua tahap. Tahap pertama terdiri dari pembelajaran autoencoder untuk memperoleh bobot dari encoder yang digunakan untuk mereduksi dimensi data dan k-means clustering untuk memperoleh centroid awal. Tahap kedua terdiri dari penghitungan soft assignment, penentuan distribusi bantuan untuk menggambarkan cluster di ruang data, dan dilanjutkan dengan backpropagation untuk memperbarui bobot encoder dan centroid. Dalam penelitian ini, dibangun dua macam model DEC yaitu DEC standar dan DEC without backpropagation. DEC without backpropagation adalah DEC yang menghilangkan proses backpropagation pada tahap kedua. Setiap model DEC pada penelitian ini akan menghasilkan topik-topik. Hasil tersebut dievaluasi dengan menggunakan coherence. Dari penelitian ini dapat dilihat bahwa model DEC without backpropagation lebih baik daripada DEC standar bila dilihat dari waktu komputasi dengan perbedaan coherence antara keduanya yang tidak terlalu jauh.


Topic detection is a technique for obtaining the topics that are contained in a textual data. One of the methods for topic detection is clustering. However, generally clustering does not produce an effective cluster when it is done by using data with high dimension. Therefore, to get an effective cluster, dimensionality reduction is needed before clustering in the lower dimensional feature space. In this research we use DEC method for topic detection. DEC method is used to optimize the feature space and cluster simultaneously. DEC is divided into two stages. The first stage consists of autoencoder learning that obtains the weights of the encoder that used for dimension reduction and k-means clustering to get the initial centroid. The second stage consists of the soft assignment calculation, computing the auxiliary distribution that represents the cluster in the data space, and backpropagation to update the encoder weights and the centroid. In this research, two DEC models are built, namely the standard DEC and DEC without backpropagation. DEC without backpropagation is the DEC which eliminate the backpropagation process in the second stage. Every DEC models will produce topics. The results are evaluated using the coherence measure. From this research, it can be seen that DEC without backpropagation is better than standard DEC in terms of computation time with a slight difference in coherence measure.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zakki Muhammad Thobari
"Skripsi ini bertujuan untuk menganalisis jenis-jenis kecurangan yang telah terjadi, bagaiamana penerapan program pencegahan dan pendeteksian kecurangan, serta peran audit internal dalam penerapan program pencegahan dan pendeteksian kecurangan pada PT. WXY. Ruang Lingkup penelitian ini terbatas pada cabang dan pabrik di PT. WXY. Penelitian ini menggunakan metode penelitian studi kasus dengan pendekatan kualitatif deskriptif. Data-data yang didapat merupakan hasil wawancara, dan kajian literatur yang kemudian di olah sesuai dengan tema penelitian. Berdasarkan analisis penelitian ini, dua kategori kecurangan yaitu korupsi dan penyalahgunaan aset berdasarkan Fraud Tree telah terjadi di PT. WXY. Manajemen memiliki kelemahan dalam struktur pengendalian internal dalam mencegah dan mendeteksi kecurangan. Namun, Audit Internal telah berperan dengan cukup baik dan aktif dalam penerapan program pencegahan dan pendeteksian kecurangan di perusahaan meskipun dengan batasan-batasan yang dimiliki.

This thesis aims to analyze the types of fraud that have occurred, how to implement fraud prevention and detection programs, as well as the role of internal audit in implementing fraud prevention and detection programs at PT. WXY. The scope of this research is limited to branches and factories at PT. WXY. This study uses a case study research method with a descriptive qualitative approach. The data obtained are the results of interviews and literature reviews which are then processed according to the research theme. Based on the analysis of this study, two categories of fraud, namely corruption and misappropriation of assets, based on the Fraud Tree have occurred at PT. WXY. Management has weaknesses in the internal control structure in preventing and detecting fraud. However, Internal Audit has played a fairly good and active role in implementing fraud prevention and detection programs in the company despite its limitations."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhrurrozi
"Seiring dengan pesatnya penggunaan kamera pengawas di dalam maupun di luar gedung , maka dalam beberapa tahun terakhir berkembang teknik pendeteksian asap memanfaatkan CCD camera berbasis computer vision. Namun tidak begitu jelas atas dasar apa nilai treshold harus ditetapkan untuk memenuhi persyaratan keselamatan. Penelitian ini mencoba melanjutkan pengembangan sistem deteksi asap berbasis video dengan mencari karakter dari asap, baik secara fisik (optical density) maupun berbasis citra, dari berbagai material jenis polimer. Kemudian akan dicari korelasi antara karakteristik asap secara fisik terhadap karakteristik asap berbasis pengolahan citra, untuk dapat meningkatkan akurasi sistem deteksi asap berbasis video.

Following the rapid expansion of surveillance video camera inside or outside the building, the development of smoke detection based on computer vision has increase as well in recent years. But it is still not very clear on what basis the threshold value of detection system for image processing should be set to meet the safety requirement. This research attemp to continue the development of smoke video detection by search for the characteristics of the smoke itself, physically (optical density) as well as digital imaging, from a variety of polymer materials. Afterwards this research will find out the correlation between them, in order to improving video smoke detection accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S43460
UI - Skripsi Open  Universitas Indonesia Library
cover
Angga Pratama
"ABSTRAK
Perkembangan teknologi khususnya internet berkembang begitu pesat dewasa ini. Oleh karena itu, arus informasi meningkat begitu cepat yang menyebabkan informasi diperoleh sangat banyak. Media sosial pun menjadi salah satu sarana penyedia informasi, salah satunya adalah Twitter. Pendeteksian topik menjadi suatu kebutuhan bagi masyarakat untuk mengetahui hal-hal yang bicarakan pada waktu tertentu. Maka, dibutuhkan suatu cara yang cepat dan tepat untuk mendapatkan topik dari tweet yang terkirim pada Twitter. Dengan jumlah dokumen yang sangat besar, diperlukan suatu metode otomatis. Salah satu metode otomatis untuk pendeteksian topik adalah model yang berbasis faktorisasi matriks yaitu Non-negative Matrix Factorization (NMF). Metode NMF yang digunakan pada penelitian ini difokuskan pada wilayah Jakarta dan sekitarnya guna melihat topik yang dibahas masyarakat Jakarta dan sekitarnya pada kurun waktu tertentu. Hasil yang didapatkan lewat metode NMF ini selanjutnya akan dievaluasi dengan cara melihat tingkat akurasi yang dihasilkan lalu disimulasikan dalam bentuk tren berdasarkan frekuensi masing-masing topik.

ABSTRACT
Development of technology spesifically in internet grows so fast nowadays. Therefore, flow of information increase rapidly that leads information to be obtained so much. Social media become the one information provider, such as Twitter. Topic detection become a public society to know the things that being discussed at a certain time. Hence, needed a quick and precise method to obatain topic from tweet posted from twitter. With large amount of document, needed an automaticly method. One of automaticly method that based on matrix factorization is Non-negative Matrix Factorization as usually being called as NMF. Non-negative matrix factorization method on this research focused on region of Jakarta in order to know what are being discussed by society there in a period of time. The result have been obtain with NMF method will be evaluated by calculating the accuracy and finally will be simulated in the form of trend plot based on the frequency of the topic."
2016
S65611
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4   >>