Search Result  ::  Save as CSV :: Back

Search Result

Found 4 Document(s) match with the query
cover
Achmad Rizki Aditama
"Pertumbuhan industri e-commerce di Indonesia telah meningkat secara signifikan dalam beberapa tahun terakhir. Nilai transaksi di sektor e-commerce di Indonesia diproyeksikan akan tumbuh sekitar 115%. Respons cepat terhadap keluhan pelanggan di platform digital menjadi krusial dalam mempertahankan kepercayaan dan loyalitas pelanggan di tengah persaingan yang ketat. Salah satu strategi yang digunakan oleh perusahaan adalah pendekatan multi-channel, di mana media sosial berperan penting. Namun, penggunaan media sosial sebagai saluran komplain menghadapi tantangan dalam membedakan keluhan yang sebenarnya dari noise yang tidak relevan. Saat ini, PT XYZ mengalami kesulitan dalam mengidentifikasi secara akurat interaksi mana yang memerlukan penanganan khusus dan mana yang tidak. Sistem yang ada saat ini mengharuskan tim khusus melakukan penyaringan secara manual. Metode ini menyebabkan tim tidak dapat mengimbangi saat terjadi peningkatan volume interaksi yang pesat. Akibatnya, waktu respon menjadi lebih lambat hingga 20%. Penelitian ini bertujuan untuk mengevaluasi performa model berbasis klasifikasi yang dapat dimanfaatkan serta menyusun rekomendasi dalam upaya meningkatkan skalabilitas untuk mengatasi tantangan tersebut. Desain penelitian ini menggunakan metode experimental research, di mana data yang diolah berasal dari interaksi pelanggan di media sosial dari rentang waktu tertentu. Dalam pengembangan model klasifikasi, digunakan beberapa metode meliputi Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN), dan XGBoost menggunakan TF-IDF sebagai metode ekstraksi fitur, serta menggunakan BERT untuk ekstraksi fitur hingga klasifikasi. Pemodelan interaksi pelanggan dilakukan sebanyak lima kali dengan pengaturan k-fold cross-validation untuk menghindari bias. Hasil penelitian ini menunjukan bahwa dari persebaran data interaksi yang terdiri terdapat 6.220 keluhan dan 4.572 bukan keluhan. Akun sosial media perusahaan yang dikhususkan sebagai saluran komplain terbukti menjadi saluran yang efektif untuk menangani keluhan pelanggan, sementara akun yang bersifat umum lebih sering digunakan untuk interaksi yang lebih luas yang tidak terkait dengan keluhan. Tipe keluhan juga teridentifikasi bahwa keluhan yang berkaitan dengan logistik mendominasi, mencakup isu-isu seperti keterlambatan pengiriman, serta pelayanan dari kurir atau ekspedisi. Model klasifikasi terbaik yang berhasil dikembangkan menggunakan BERT dengan indobert-p1 mencapai F1-score sebesar 98,3%. Implementasi model ini berpotensi mengurangi beban pekerjaan hingga 97,58% dan menghasilkan ROI sebesar 23,52 kali. Dengan pengurangan beban pekerjaan ini, perusahaan dapat mengurangi jumlah headcount yang dibutuhkan untuk proses klasifikasi manual menjadi hanya 1 orang.

The e-commerce industry in Indonesia has experienced significant growth in recent years, with transaction values projected to increase by around 115%. Rapid responsiveness to customer complaints on digital platforms is crucial for maintaining trust and loyalty amidst intense competition. One strategy utilized by companies involves a multi-channel approach, where social media plays a pivotal role. However, using social media as a complaint channel faces challenges in accurately discerning genuine complaints from irrelevant noise. Currently, PT XYZ encounters difficulties in precisely identifying which interactions necessitate specialized handling, relying on manual screening by dedicated teams. This method proves inadequate during periods of increased interaction volumes, resulting in response times slowing by up to 20%. To address these challenges, this research aims to evaluate the performance of machine learning models and provide recommendations for enhancing scalability. The study employs an experimental research design, analyzing customer interactions on social media over a specified timeframe. Various classification methods, including Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN), and XGBoost, utilize TF-IDF for feature extraction and BERT for feature extraction and classification. Customer interaction modeling is conducted five times with k-fold cross-validation to mitigate bias. The findings reveal that the dataset comprises 6,220 complaints and 4,572 non-complaints. Company-designated social media accounts prove effective for handling customer complaints, while general accounts are more commonly used for broader interactions unrelated to complaints. Issues related to logistics, such as delivery delays and courier services, dominate the identified types of complaints. The best-performing classification model, leveraging BERT with indobert-p1, achieves an impressive F1-score of 98.3%. Implementation of this model has the potential to reduce workload by 97.58% and yield an ROI of 23.52 times. By minimizing the need for manual classification, the company could potentially reduce required headcount to only 1 person.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Syamsul Erisandy Arief
"Hadirnya beragam layanan penyintesis suara manusia di Internet memungkinkan siapa pun untuk melakukan sintesis suara manusia dengan memanfaatkan layanan ini. Di tangan yang salah, teknologi ini dapat merugikan masyarakat awam dan meningkatkan peluang keberhasilan penipuan. Maraknya layanan penyintesis suara manusia yang sudah hampir tidak dapat dibedakan oleh telinga manusia memberikan keluangan untuk menghadirkan sebuah sistem yang dapat membedakan suara manusia dengan suara manusia sintetis. Penelitian ini memanfaatkan teknologi pembelajaran mesin yang berupa Convolutional Neural Networks pada spektogram suara manusia dari himpunan data pelatihan dengan 16 suara manusia yang berisikan 4 suara pria asli, 4 suara pria sintetis, 4 suara wanita asli, dan 4 suara wanita sintetis dengan jumlah 1.008 berkas rekaman suara manusia berformat WAV yang telah dirancang dan dibuat khusus untuk penelitian ini dengan pembagian pelatihan dan validasi sebesar 80% dan 20% secara berurut. Hasil akhir dari penelitian ini memberikan sebuah model CNN dengan bobotnya yang memberikan nilai data loss sekecil 0,00022 dan sebuah sistem yang dapat melakukan deteksi keaslian suara manusia berdasarkan berkas rekaman suara manusia dan model CNN serta bobot yang diberikan.

The presence of human voice synthesis services on the Internet allows everyone to create synthetic human voices by leveraging these services. In the wrong hands, this technology could harm unsuspecting citizens and promote chances of scams. The abundance of human voice synthesis service that is almost indistinguishable by human ears gave presence to a system that could distinguish between real and synthetic human voices. This study leverages machine learning technology in the form of Convolutional Neural Networks on a spectrogram from a training dataset with 16 different human voices consisting 4 authentic men voices, 4 synthetic men voices, 4 authentic women voices, and 4 synthetic women voices with the total of 1,008 WAV formatted human voice recording files that was designed and made specifically for this study with the splitting ratio for training and validation set to 80% and 20% respectively. The end result of this study produces a CNN model and its weights with a data loss score of 0.00022, as well as a system that can perform authenticity detection on a human voice based on the given human voice recording file and the CNN model with its weights."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Nuryaningrum
"Pesatnya perkembangan ekonomi menyebabkan kebutuhan manusia menjadi tidak terbatas. Usaha yang dapat dilakukan untuk pemenuhan kebutuhan hidup di masa yang akan datang adalah dengan melakukan investasi. Saham merupakan salah satu instrumen investasi dengan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh adanya pergerakan harga saham yang cenderung tak menentu selama periode waktu tertentu. Untuk meminimalkan risiko kerugian, perlu dilakukan prediksi pergerakan harga saham. Prediksi yang akurat akan membantu para investor dalam menentukan nilai saham di masa yang akan datang. Pada penelitian ini, dilakukan perbandingan untuk memprediksi pergerakan harga saham menggunakan tiga algoritma supervised machine learning yaitu Random Forest, Support Vector Regression (SVR) dan K- Nearest Neighbor (KNN) berdasarkan tingkat akurasinya. Sutau model dikatakan akurat jika memiliki nilai Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE) yang lebih rendah. Pada penelitian ini, diperoleh hasil prediksi harga penutupan saham terbaik menggunakan metode Support Vector Regression dengan melihat rendahnya nilai RMSE dan MAE yang dihasilkan dibandingkan dengan dua metode lain. Dalam perhitungannya, penelitian ini menggunakan histori data harian dari website investing.com. periode Maret 2017 hingga Februari 2020 dari tiga perusahaan di Indonesia yang terdaftar dalam IDX30.

The fast growth of economic development causes human needs to be immeasurable. One of the efforts that could be done to fulfill life needs in the future was Investation. Stock is one of the Investation instruments with interesting benefits but has high- risk loss caused by the unstable stock market trend between some period. For minimalizing the risky loss, the literati need to predicting the stock rate trend. The accurate prediction will help the investor in choosing a stock value in the future. In this study, the literati make a comparison to predict stock market trend with three kinds of algorithms supervised machine learning that are Randon Forest, Support Vector Regression (SVR), and K-Nearest Neighbor (KNN) based on their accurate level. A model could be said accurate just if they have a lower value of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The best Stock Closing Price prediction will be obtained by the Support Vector Regression method and see how low the result of RMSE and MAE value is compared with another method. To calculate, the study uses a daily data history from investing.com website between March 2017 to February 2020 period. The object data is a three big company in Indonesia which listed in IDX30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harum Ananda Setyawan
"Karet merupakan salah satu komoditas penyumbang Produk Domestik Bruto (PDB) terbesar Indonesia. Indonesia merupakan negara dengan lahan karet terluas di dunia. Namun hasil karet yang diproduksi oleh Indonesia masih kalah dibanding Thailand. Hal tersebut disebabkan oleh pemberian pupuk, pestisida, dan perlindungan tanaman yang masih belum maksimal. Untuk perlindungan tanaman karet, di Indonesia biasanya dilakukan melalui penelitian daun karet. Akan tetapi, hal tersebut sangatlah tidak efisien dibanding dengan luas lahan yang ada. Sehingga diperlukan suatu metode yang lebih efisien untuk mendeteksi penyakit pada tanaman karet. Pada penelitian ini, penulis merancang suatu metode pendeteksian dini pengendalian penyakit tanaman karet menggunakan metode k-means clustering dan spectral clustering menggunakan citra digital yang diambil menggunakan drone. Melalui penelitian ini, diharapkan produksi tanaman karet dapat ditingkatkan dikarenakan proses pengendalian penyakit yang lebih efisien. Dengan penelitian ini, lahan karet sehat dan bergejala penyakit dapat dikelompokkan ke masing-masing klaster. Untuk selanjutnya, untuk lahan karet bergejala penyakit dapat dilakukan penelitian lebih lanjut untuk mengetahui jenis penyakit dan level penyakit yang dialami. Pendeteksian penyakit tanaman karet pada penelitian ini memiliki hasil 0,702 untuk k-means clustering dan 0,566 untuk spectral clustering dengan metode evaluasi silhouette score. Hal tersebut dikarenakan data citra yang masih sangat terbatas baik dalam jumlah maupun teknik pengambilan gambar. Namun untuk evaluasi menggunakan mean dan standard deviation, Spectral Clustering dengan perspective transform memiliki hasil yang lebih baik. Metode Spectral Clustering dengan data yang telah dilakukan perspective transform mampu mengklaster lahan karet yang hijau dan agak menguning.

Rubber is one of the largest contributors to Indonesia's Gross Domestic Product (GDP). Indonesia is a country with the largest rubber plantation in the world. However, the rubber produced by Indonesia is still inferior to Thailand. This is caused by the provision of fertilizers, pesticides, and plant protection that is still not optimal. For the protection of rubber plants, in Indonesia it is usually done through rubber leaf research. However, this is very inefficient compared to the existing land area. So we need a more efficient method to detect diseases in rubber plants. In this study, the authors designed a method for early detection of rubber plant disease control using the k-means clustering method and spectral clustering using digital images taken using drones. Through this research, it is hoped that the production of rubber plants can be increased due to a more efficient disease control process. With this research, healthy rubber fields and disease symptoms can be grouped into each cluster. Henceforth, for rubber fields with disease symptoms, further research can be carried out to determine the type of disease and the level of disease experienced. The detection of rubber plant diseases in this study had satisfactory results, namely  for k-means clustering and  for spectral clustering. This is because the image data is still very limited both in number and technique of taking pictures. However, for evaluation using the mean and standard deviation, Spectral Clustering with perspective transform has better results. The Spectral Clustering method with data that has been carried out with perspective transform is better able to cluster green and slightly yellow rubber land."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library