Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Akbar Aufar Yudithio
"ABSTRAK
Dalam pengoperasian sistem tenaga listrik untuk dapat menyediakan tenaga listrik di masa yang akan datang maka diperlukan suatu perencanaan operasi sistem tenaga listrik. Salah satu bagian utama yang harus disiapkan oleh penyedia tenaga listrik PLN adalah bagian pembangkitan, dalam merencanakan pembangkitan tenaga listrik harus selaras dengan besar beban puncak pada waktu tertentu. Kemudian, diperlukan pula suatu faktor keandalan yang berhubungan dengan pembangkitan dan besar beban puncak yaitu reserve margin, yang merupakan persentase besar cadangan pembangkit terhadap besar beban puncak. Dalam penelitian ini, penulis menemukan suatu permasalahan yaitu besar reserve margin yang sangat besar pada tahun 2019 dan pada tahun 2020 yaitu sebesar 55 dan 49 berdasarkan perencanaan PLN pada RUPTL 2017-2026. Oleh karena itu, penulis mencoba melakukan peramalan beban hingga tahun 2020 menggunakan Jaringan Syaraf Tiruan, lalu mencoba menentukan berapa reserve margin yang seharusnya diperlukan dan akan muncul berapa besar pembangkitnya sehingga perencanaan pembangkit dapat lebih efisien. Didapatkan hasil peramalan beban menggunakan JST pada tahun 2017 adalah 26,419 MW, tahun 2018 adalah 28,001 MW, lalu tahun 2019 adalah 29,716 MW, dan pada tahun 2020 adalah 30,779 MW. Dari beberapa variasi reserve margin, penulis memilih merekomendasikan reserve margin sebesar 30 . Sehingga, total pembangkit yang akan beroperasi pada tahun 2017 menjadi sebesar 34,345 MW, tahun 2018 sebesar 36,401 MW, lalu pada tahun 2019 sebesar 38,631 MW, dan pada tahun 2020 sebesar 40,013 MW.

ABSTRACT
In the operation of electric power system to provide electric power in the future it is necessary to have a planning operation of electric power system. One of the main components that must be prepared by the provider of electricity PLN is the generation component, in planning the generation of electricity must be in line with the peak load at a certain time. Then, a reliability factor associated with the generation and the peak load called reserve margin, which is a percentage of the generating reserves against the peak load. In this study, the authors found a problem that is the value of the reserve margin is very large in 2019 and in the year 2020 that is equal to 55 and 49 based on PLN planning in RUPTL 2017 2026. Therefore, the author tries to forecast the load until 2020 using Artificial Neural Network ANN , then the author try to determine how much is the reserve margin should be required and how much is the power plants needed, so that the planning can be more efficient. After doing a forecast and calculation, it can obtained from load forecasting results using ANN in 2017 the peak load is 26,419 MW, 2018 is 28,001 MW, then year 2019 is 29,716 MW, and in the year of 2020 is 30,779 MW. From several variations of reserve margin, the author has choosen to use a reserve margin of 30 . Thus, the total power plant to be installed in 2017 will be 34,345 MW, in 2018 of 36,401 MW, then in 2019 by 38,631 MW, and by 2020 by 40,013 MW. "
2017
S70071
UI - Skripsi Membership  Universitas Indonesia Library
cover
"It has been studied the forecasting of electric power peak load in the Indonesian electric system by
using Artificial Neural Network (ANAU) Back Propagation method with the study period is 2000 - 2025.
The long-range forecasting of electric peak load is influenced by economic factors. in this study, it?s
selected the economic data which is estimated very influence to forecasting, which in this case become
input ofAN1\L i. e.: Gross of Domestic Product (GDP) per-capita, Population, Amount of Households,
Electrification Ratio, Amount of CO, Pollution, Crude Oil Price, Coal Price, Usage of Final Energy,
Usage Qf Final Energy on Industrial Sector; and Average Electric Charges. Data used for study are
actual data, start year 1990 up to 2000. Result of the peak load forecasting in the end of study (2025) by
using ANN is 85,504 MHC meanwhile the load forecasting in the National Electricity General lan
(NEGP) is 79,920 MW (the difference of both is about 6. 6%). Based on ANN approach is obtained results
that the peak load forecasting in Indonesia in the year 2005, 2010, 2015, 2020 and 2025 are 16,516 MHC
24,402 MHC 36, 15 7 MIK 56,060 MW and85,584 MW respectively.
"
Jurnal Teknologi, Vol. 19 (3) September 2005 : 211-217, 2005
JUTE-19-3-Sep2005-211
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Yudha P
"Crashworthiness menjadi perhatian besar dalam industri otomotif dewasa ini. Sebuah kendaraan didesain tidak hanya memiliki peforma yang tinggi tetapi juga memiliki fitur keamanan yang memadai. Salah satu fitur keamanan tersebut adalah pemanfaatan zona benturan untuk mengubah energi tabrakan menjadi energi deformasi plastis. Paper ini difokuskan pada komponen front rail pada zona benturan yang disederhanakan menjadi sebuah tabung tipis bujur sangkar. Dalam penelitian ini akan dilakukan beberapa test untuk menginvestigasi pengaruh variasi posisi dan diameter dari crush intitators terhadap karakteristik penyerapan energi pada tabung tipis bujur sangkar. Crush initiators dapat memberikan pengaruh besar terhadap penyerapan energy tumbukan. Untuk mendapatkan penyerapan energi yang optimal, crush initiators perlu ditempatkan pada posisi tertentu. Tabung memiliki ketebalan 0.85 mm dan panjang sisi 36,55 mm dengan 2 buah crush initiators bertipe lingkaran. Pengujian dilakukan dengan software Ansys LS-Dyna. Berat dari impaktor diatur pada 80 kg dan kecepatan tumbukan 5,2 m/s. Hasilnya adalah posisi dan diameter crush initiators mempengaruhi nilai gaya maksimum dengan pola semakin kecil posisi dan semakin besar diameter crush initiators maka semakin kecil pula besar gaya maksimumnya.

Crashworthiness become a major concern in today's automotive industry. A vehicle designed not only have the high performance but also have adequate security features. One of security feature is the utilization of the collision zone to transform the collision energy into plastic deformation energy. This paper focuses on the component front rail at the collision zone that simplified into a thin tube square. In this study will be conducted several tests to investigate the effect of variations in the position and diameter of the crush intitators against the energy absorption characteristics of thin-walled square tubes. Crush initiators can give a major influence on the absorption of impact energy. To obtain optimal energy absorption, crush initiators need to be placed in a certain position. The tube has a thickness of 0.85 mm and 36.55 mm side length with 2 pieces circle type of crush initiators. Testing is done with Ansys LS-Dyna software. Weight of impaktor is set at 80 kg and the 5,2 m/s of speed collision. The result is the positions and diameters of the crush initiators affect the value of the maximum force with a pattern, the nearest position and the greater the diameter gives smaller maximum force."
Depok: Universitas Indonesia, 2015
S59739
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qashtalani Haramaini
"Pola konsumsi energi ternyata menjadi masalah tersendiri yang menyebabkan biaya pokok penyediaan yang tinggi dikarenakan mahalnya sumber energi yang di gunakan untuk memenuhi beban puncak, serta nilai investasi yang tinggi untuk membangun pembangkit listrik yang hanya digunakan untuk memenuhi pemakian pada satu waktu . Maka tulisan ini meneliti dampak tarif listrik dinamis terhadap tagihan listrik dan biaya pokok penyedian untuk mengoptimalkan pembangkit yang tersedia. Dari hasil penelitian bahwa membuat rasio tarif off peak dengan peak 1:2 atau penurunan off peak 6% dan kenaikan tarif peak 26% membuat kenaikan tarif rata rata pelanggan industri 9% dan membutuhkan pergeseran beban dari peak & mid-peak ke off peak sebesar 28% dan 1% agar tagihan listrik konsumen tidak berubah, kemudian jika tarif off peak diturunkan 30% dan tarif peak dinaikkan 26% membuat kenaikan tarif rata rata pelanggan industri 5%. Dengan kenaikan tarif mid-peak 50% dan kenaikan peak 26% membuat kenaikan tarif rata rata pelanggan industri 33 % dan membutuhkan pergeseran beban dari peak& mid-peak ke off peak sebesar 63% dan 43% agar tagihan listrik konsumen tidak berubah. Selain itu  elastisitas tarif menunjukan angka minus yang menunjukan bahwa tarif listrik industri bersifat elastis dan elastisitas silang nya bersifat komplenter. Tarif mid-peak memiliki elastisitas yang paling berpengaruh dengan nominal -0,3%. Sekitar 33% pelanggan yang bersedia melakukan investasi untuk alat yang bisa menggeser beban ke luar beban puncak. Dari total biaya pembangkitan perhari yang mencapai Rp. 955.974.721.222 untuk suatu sistem maka dengan skema Time of Use bisa menurunkan biaya pokok penyediaan total sebanyak 2,59% perhari atau Rp 10.126.850.860 ( Rp. 3.645.666.309.746 / tahun).

The pattern of energy consumption turns out to be a separate problem that causes high cost of supply due to the high energy sources used to meet peak loads, as well as a high investment value to build a power plant that is only used to meet usage at one time. So this paper examines the impact of dynamic electricity tariffs on electricity bills and supply costs to optimize the available power plants. From the results of the study that made the peak 1: 2 off peak tariff ratio or 6% drop off peak and 26% peak tariff increase made the average tariff increase for industrial customers 9% and needed a shift in load from peak & mid-peak to off peak of 28 % and 1% so that the consumer electricity bill does not change, then if the off peak tariff is reduced by 30% and the peak tariff is increased by 26%, the average tariff increase for industrial customers is 5%. With a 50% increase in mid-peak rates and a 26% increase in peak, the average tariff increase of industrial customers is 33% and requires a shift of load from peak & mid-peak to off peak by 63% and 43% so that consumer electricity bills do not change. In addition, the tariff elasticity shows a minus number which indicates that industrial electricity tariffs are elastic and the cross elasticity is complex. Mid-peak rates have the most influential elasticity with a nominal of -0.3%. Around 33% of customers are willing to invest in a tool that can shift the load out of the peak load. Of the total generation costs per day which reaches Rp. 955,974,721,222 for a system with the Time of Use scheme can reduce the total cost of providing a total of 2.59% per day or Rp. 10,126,850,860 (Rp. 3,645,666,309,746 / year)."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T52542
UI - Tesis Membership  Universitas Indonesia Library
cover
Agung Priyambodho
"ABSTRAK
Listrik merupakan sumber energi primer masyarakat, dengan perkembangan ekonomi suatu wilayah maka pertumbuhan kebutuhan energi listrik akan meningkat sejalan dengan hal tersebut perlu dilakukan pembangunan pembangkit dan transmisi listrik yang terencana. Kalimantan Tengah merupakan wilayah indonesia yang memiliki sumber gas alam yang melimpah, dimana saat ini kondisi kelistrikan Kalimantan merupakan wilayah yang dapat dikatagorikan defisit listrik, serta pembangkit di Wilayah Kalimantan Tengah masih menggunakan pembangkit dengan bahan bakar diesel. Dengan meningkatnya kebutuhan listrik pada saat beban puncak dan tersedianya sumber gas alam di Kalimantan Tengah maka perencanaan pembangunan pembangkit bahan bakar gas harus dilakukan sejalan dengan program pemerintah dalam melakukan diversifikasi energi dari bahan bakar diesel menjadi bahan bakar gas. Tesis ini bertujuan untuk menentukan konfigurasi terbaik yang dapat digunakan terhadap variasi pembebanan listrik dan menurunkan biaya pokok produksi di wilayah Kalimantan Tengah dengan melakukan perencanaan konfigurasi pembangkit dengan pembebanan yang bervariasi pada saat pembebanan base load dan peak load, pembangkit yang akan digunakan adalah pembangkit jenis Gas Turbin dan Gas Engine. Dengan konfigurasi pembangkit base Load sebesar 40 MW dan peak Load 300 MW dan total biaya pokok produksi mencapai 1.313,26 Rp/kWh dimana nilai tersebut masih dibawah biaya pembangkitan rata-rata PLN untuk PLTD mencapai 2,300 Rp/kWh dan PLTG mencapai 3,306,22 Rp/kWh serta masih di bawah BPP Kalselteng sebesar 1,655 Rp/kWh dan Kaltim sebesar 1,357 Rp/kWh.

ABSTRACT
Electricity is a primary energy source for the community, with the economic development of a Region, the electric energy growth will increase. In line with the electricity growth, it is necessary to construct power generation and electricity transmission with well development and planned. Central Kalimantan is one of the Indonesian region which has abundant natural gas resources, although the electricity condition of Kalimantan Region Could be categorized as deficit of electricity, and there are many Power Plants in Central Kalimantan region that still using diesel as a primary fuel. With the increasing demand for electricity during peak loads and the availability of natural gas in Central Kalimantan, planning for Power Plant construction using gas as fuel in line with the government program for energy diversify replace diesel fuel into gas fuel. This thesis aims to analysis best power plant configuration for variable power demand and to lower the Power Plants production cost in the region of Central Kalimantan by utilizing the natural gas resources in Central Kalimantan to meet the electricity needs at the time of base load and peak load condition, to utilize the limited resources of gas fuel, Power Plant configuration that used in this study is Gas Turbines and Gas Engine type. The best configuration to supply the electricity demand at 40 MW for baseload and at 300 MW for peak load, Total cost of production reached 1.313.26 Rp kWh this cost is still below the cost of generating PLN for PLTD that reached 2,300 Rp kWh and PLTG that reached 3,306,22 Rp kWh and levelized electricity generating cost for PLTGU still below cost electricity of Kalselteng at 1,655 Rp kWh and Kaltim at 1,357 Rp kWh."
2017
T47655
UI - Tesis Membership  Universitas Indonesia Library