Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Diasrani Khairunnisa
Abstrak :
Penelitan ini ditujukan untuk mengetahui pengaruh polyethylene glycol (PEG) sebagai surfaktan non ionik terhadap sifat dari fluida yang terdispersi partikel mikro seperti konduktivitas termal dan kestabilan, serta pengaruh penggunaan karbon tempurung kelapa sebagai partikel yang didispersikan pada fluida. Fabrikasi partikel karbon dilakukan pada arang tempurung kelapa yang sudah dilakukan proses penggilingan dengan 500 rpm selama 15 jam yang dicampurkan dengan fluida dasar air distilasi melalui ultrasonifikasi. Partikel yang didispersikan dalam larutan adalah sebesar 0.1, 0.3, 0.5% karbon. Untuk mengamati pengaruh penambahan surfaktan dilakukan penambahan PEG sebesar 10% dan 20% pada mikrofluida. Sampel karbon dikarakterisasi menggunakan SEM-EDS untuk mengetahui morfologi partikel dan unsur pada partikel. Lalu fluida terdispersi patikel mikro dikarakterisasi dengan PSA untuk mengetahui ukuran partikel dan dilakukan uji konduktivitas termal. Kestabilan dari fluida yang telah terdispersi partikel mikro diamati dengan melakukan uji zeta potensial. Hasil yang didapatkan secara umum menunjukkan bahwa konduktivitas termal akan meningkat dengan peningkatan konsentrasi partikel, namun terjadi penurunan konduktivitas termal dengan penambahan surfaktan PEG.
This research is intended to determine the effect of polyethylene glycol (PEG) as a non-ionic surfactant and the effect of the addition of miro particle carbon from coconut shell ash on the properties of fluids such as thermal conductivity and stability. Coconut shell carbon were milled with planetary ball mill for 15 hours with 500 rpm. Fabrication of micro particle dispersed in fluids used two step approach with coconut shell carbon as micro particle and distilled water as base fluid. Particles dispersed in solution amounted to 0.1, 0.3, 0.5% w / v. The effect of surfactants on fluids is observed by adding 10% and 20% PEG additions to the microfluidics. Carbon were characterized using SEM to determine particle morphology and EDS to detect the impurity on the carbon sample. Then the carbon particle dispersed in fluid was characterized by PSA to determine the particle size and also characterized by thermal conductivity test. Stability was also observed by conducting a zeta potential test. The results obtained generally show that thermal conductivity will increase with an increase in particle concentration, but a decrease in thermal conductivity with the addition in PEG surfactants.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andreas Sugiarto
Abstrak :
Fluida yang terdispersi partikel grafena banyak diteliti karena grafena memiliki konduktivitas termal yang sangat tinggi (±5000 W/mK). Namun grafena memiliki kelemahan berupa sintesisnya yang sulit dan buruknya tingkat dispersitas dalam air. Oleh karena itu, pada penelitian ini digunakan partikel reduced Graphene Oxide (rGO) yang memiliki struktur seperti grafena, tetapi tingkat dispersinya lebih baik dan sintesisnya tidak sesulit grafena. Dalam fluida juga ditambahkan surfaktan Sodium Dodecyl Benzene Sulfonate (SDBS) dan Polyethylene Glycol (PEG), untuk meningkatkan tingkat kestabilan rGO, sehingga peristiwa aglomerasi dapat dihindari. Proses sintesis rGO dimulai dari oksidasi grafit menjadi Graphene Oxide (GO) menggunakan metode Hummers termodifikasi. Lalu GO direduksi menjadi rGO menggunakan reduktor kimia hidrazine. Setelah itu, partikel dikarakterisasi menggunakan Energy Dispersive Spectroscopy (EDS), Scanning Electron Microscope (SEM), dan X-Ray Diffraction (XRD), untuk memastikan struktur rGO berhasil didapatkan. Kemudian partikel rGO dengan variabel konsentrasi 0.01, 0.03, 0.05% Wt, serta surfaktan SDBS dan PEG sebanyak 10% Wt didispersikan dalam 100 ml akuades menggunakan proses ultrasonifikasi selama 3 jam. Fluida terdispersi partikel mikro rGO kemudian dikarakterisasi dengan pengujian Particle Size Analyzer (PSA) dan Potensial Zeta untuk mengetahui distribusi ukuran dan tingkat kestabilannya. Nilai konduktivitas termal fluida terdispersi partikel mikro rGO dihipotesis melalui perbandingan berbagai literatur dan analisis pengujian yang telah dilakukan. Hasilnya, penambahan rGO dengan konsentrasi 0.01, 0.03, dan 0.05% Wt akan menghasilkan fluida dengan stabilitas yang cukup baik, karena adanya gugus oksigen yang tersisa pada rGO. Komposisi penambahan optimum untuk meningkatkan nilai konduktivitas termalnya adalah 0.05% Wt. Penambahan surfaktan sebanyak 10% Wt meningkatkan stabilitas fluida, dibuktikan melalui meningkatnya nilai potensial zeta. Walaupun penambahan PEG menurunkan potensial zeta, stabilitas fluida meningkat melalui fenomena steric hinderance. Penambahan surfaktan sebanyak 10% Wt akan menurunkan konduktivitas termal fluida karena meningkatkan viskositas dan resistansi termalnya, serta surfaktan sendiri memiliki konduktivitas termal yang buruk. Dibandingkan surfaktan jenis non-ionik, surfaktan jenis anionik seperti SDBS lebih cocok untuk mendispersikan rGO dan dapat meningkatkan konduktivitas termal fluida pada komposisi penambahan yang tepat. ......Fluids that were dispersed by graphene particles have been widely studied since graphene has very high thermal conductivity (5000 W/mK). However, graphene has disadvantages such as its difficulty to be synthesized and has poor level of dispersity in the water. Therefore, in this study, the use of reduced Graphene Oxide (rGO) particles will be explored. rGO has similar structure as graphene, but it has better dispersity in water and its method of synthesis is not as difficult as graphene. Furthermore, the addition of Sodium Dodecyl Benzene Sulfonate (SDBS) and Polyethylene Glycol (PEG) will be studied, to further increase the stability of rGO in water, so that the agglomeration can be avoided. Graphite was oxidized into Graphene Oxide (GO) using modified Hummers method. Then GO was reduced to rGO using hydrazine as the reducing agent. After that, rGO particles were characterized using Energy Dispersive Spectroscopy (EDS), Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD), to ensure the structure of rGO was obtained. Afterwards, rGO particles with concentration variable of 0.01, 0.03, 0.05% Wt and 10% Wt of SDBS or PEG were dispersed in 100 ml of distilled water, using ultrasonication process for 3 hours. rGO-dispersed Fluids then characterized using Particle Size Analyzer (PSA) and Zeta Potential measurement to determine its size distribution and rGO stability in water. The value of rGO-dispersed fluids thermal conductivity will be hypothesized through the comparison of various literature. As a result, the addition of 0.01, 0.03, and 0.05 %Wt rGO would produce fluids with good stability, due to the presence of oxygen functional groups that remain in the rGO structure. The optimum concentration of rGO to enhance the value of fluids thermal conductivity is 0.05 %Wt. The addition of surfactants as much as 10 %Wt increase the stability of rGO-dispersed fluids, which showed through the increased value of zeta potential. Although the addition of PEG decreased zeta potential, the rGO-dispersed fluids stability was increased through the phenomenon of steric hinderance. The addition of surfactants as much as 10 %Wt will decrease the rGO-dispersed fluids thermal conductivity, since it increases the viscosity and thermal resistance, as well as the surfactant itself has poor thermal conductivity. Compared with non-ionic type surfactant, anionic type surfactants, especially SDBS, is more suitable for dispersing rGO in water. However, it could only improve rGO-dispersed fluids thermal conductivity if the addition of surfactants is optimum and appropriate.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Citra Putri Alicya
Abstrak :
Nanofluida merupakan cairan dengan partikel berukuran nanometer yang memiliki karakteristik konduktivitas termal yang baik, sehingga cocok untuk digunakan sebagai media pendingin pada proses heat treatment. Dengan studi yang sedang berlangsung pada nanopartikel, melihat prospek kedepannya ketika digunakan dalam industri, penelitian lebih lanjut harus diperhatikan terutama dari segi cost material yang digunakan. Maka dari itu, penelitian ini bertujuan untuk menemukan nanopartikel alternatif yang bersumber dari alam sehingga lebih ekonmis dan ramah lingkungan. Nanopartikel berbasis bio yang digunakan pada penelitian ini adalah karbon dari arang tempurung kelapa dan cangkang sawit sebagai pembanding. Dalam penelitian ini, partikel karbon arang tempurung kelapa dan cangkang sawit disiapkan dengan metode top-down, di mana proses penggilingan partikel karbon dilakukan oleh planetary ball mill selama 15 jam pada 500 rpm. Energy Dispersive Spectroscopy (EDS), Particle Size Analyzer (PSA), Field-Emission Scanning Electron Microscope (FE-SEM), Ultimate & Proximate test, Zeta Potensial dan Konduktivitas Termal dilakukan untuk menentukan komposisi bahan, ukuran partikel, morfologi partikel, perubahan permukaan pada mikropartikel, tingkat kestabilan partikel, dan nilai konduktivitas termal dari fluida. Pengujian karakterisasi nanopartikel di awali oleh pengujian EDS yang menunjukan kadar karbon tempurung kelapa dan cangkang sawit yang digunakan dalam penelitian ini masing-masing sebesar 79,19 wt% dan 78,08 wt%. Setelah itu, pengujian PSA yang menunjukkan bahwa distribusi ukuran partikel karbon tempurung kelapa dan cangkang sawit setelah penggilingan rata-rata sebesar 0,5 μm. Oleh karena itu, kedua karbon masih belum dalam kisaran nanometer. Sintesis fluida dilakukan dengan mendispersikan mikropartikel karbon tempurung kelapa dan cangkang sawit ke dalam fluida air distilasi dengan volume 100ml. Variasi konsentrasi karbon tempurung kelapa dan cangkang sawit masing-masing sebesar 0,1 wt%, 0,3 wt%, dan 0,5 wt%.
Nanofluid is a liquid with nanometer-sized particles that has good thermal conductivity characteristics, making it suitable for use as a cooling medium in the heat treatment process. With ongoing studies on nanoparticles, looking at future prospects when used in industry, further research must be considered especially in terms of the cost of the materials used. Therefore, this study aims to find alternative nanoparticles that are sourced from nature so that they are more economical and environmentally friendly. Biobased nanoparticles used in this research are coconut shell carbon and palm shell as a comparison. In this study, carbon particles of coconut and palm shells ash were prepared by the top-down method, where the grinding process of carbon particles is carried out by the planet ball mill for 15 hours at 500 rpm. Energy Dispersive Spectroscopy (EDS), Particle Size Measuring (PSA), FE-SEM Field Scanning Electron Microscope (SEM-SEM), Ultimate & Proximate Test, Zeta Potential and Thermal Conductivity are carried out for raw materials, particle size, morphology particles on microparticles, the degree of stability of particles, and the value of thermal conductivity of microfluidics. The characterization test of nanoparticles was started by EDS testing which showed the carbon content of coconut shell and palm shell used in this study were 79,19 wt% and 78,08 wt%, respectively. After that, the PSA test showed the particle size of the coconut shell and palm shell carbon after grinding on average by 0,5 μm. Therefore, these two carbon particels is still not in the nanometer range. Fluid synthesis was carried out by dispersing coconut shells and palm shells ash into a 100 ml volume of distilled water fluid. The variation of coconut and palm shells carbon concentrations of 0,1 wt%, 0,3 wt% and 0,5 wt%, respectively.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fatih Abdul Syauqi
Abstrak :
Penelitian terkait nanofluida berbasis Graphene Oxide (GO) telah banyak dilakukan akhir-akhir ini terkait dengan sifat konduktivitas termalnya. Pada penelitian ini digunakan Metode Hummers termodifikasi untuk mensintesis GO. Nanopartikel GO kemudian dilakukan karakterisasi melalui pengujian EDS, SEM, serta XRD. Nanopartikel GO kemudian didispersikan ke dalam air sebagai fluida dasar dengan konsentrasi 0,01%, 0,03%, dan 0,05%. Surfaktan Sodium Dodecyl Benzene Sulfonate (SDBS) ditambahkan dengan konsentrasi sebesar 10% dan 20% dimana diharapkan dapat meningkatkan stabilitas dari nanofluida. Pencampuran nanofluida dilakukan dengan ultrasonikasi selama 2 jam. Kemudian Nanofluida dilakukan karakterisasi dengan pengujian Particle Size Analyzer (PSA), zeta potensial, dan konduktivitas termal.  Pada hasil PSA ukuran partikel masih diatas 100nm sehingga fluida ini disebut fluida terdispersi partikel mikro. Hasil penelitian menunjukkan penambahan konsentrasi mikropartikel GO dari 0,01% ke 0,03% tanpa surfaktan mengalami peningkatan konduktivitas termal dan pada konsentrasi 0,05% mengalami penurunan konduktivitas termal dimana aglomerasi dimungkinkan terjadi. Penambahan konsentrasi surfaktan SDBS pada setiap fluida GO mengalami penurunan nilai konduktivitas termal dimana kestabilan dari fluida juga menurun yang tunjukkan pada hasil uji zeta potensial. Sifat dari mikropartikel GO yang hidrofilik dan penambahan surfaktan anionik SDBS memiliki muatan yang sama menyebabkan gaya repulsi elektrostatik sehingga menurunnya kestabilan fluida serta efektifitas transfer panas. ......Research regarding Graphene Oxide (GO) based nanofluids was done in this present day because of its thermal conductivity. In this study, modified Hummers Method selected to synthesize GO. GO nanoparticle then characterized by EDS, SEM, and XRD. GO nanoparticle then dispersed in water as its base fluid with concentration of 0,01%, 0,03%, and 0,05%. Sodium Dodecyl Benzene Sulfonate (SDBS) surfactant was added with the concentration of 10% and 20% for a better stability. The mixing process is done by ultrasonication for 2 hours. Nanofluids then characterized by Particle Size Analyzer (PSA), zeta potential, and thermal conductivity. The PSA characterization showed the size of particle is more than 100nm so this fluid is still categorized as microparticles dispersed in fluid. Results showed that increasing of GO microparticle without surfactant at 0,01% to 0,03% enhanced the thermal conductivity of fluids, but at 0,05% the value was decreased with possibility of agglomeration. The increase of SDBS concentration at all fluids showed the decrease of thermal conductivity value. The property of GO microparticle which hydrophilic and anionic SDBS surfactant have a mutual charge which tend to make electrostatic repulsive force so the stability of the fluid and its heat transfer effectivity was decreased.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sayyidah Farhana
Abstrak :
Peningkatan sifat mekanik material dalam rekayasa mikrostruktur memiliki salah satu proses penting yaitu pendinginan cepat. Karbon aktif berbasis tempurung kelapa sawit ditumbuk halus untuk mereduksi ukuran karbon. Setelah karbon dihaluskan, proses penggilingan dilakukan untuk kembali mereduksi ukuran partikel menjadi lebih kecil menggunakan planetary ball mill dengan kecepatan 500 rpm selama 15 jam serta ditambahkan aditif Polyvinyl Alcohol (PVA). Surfaktan yang digunakan berupa Polyethylene Glycol (PEG) memiliki tujuan untuk mengurangi aglomerasi partikel sehingga dapat meningkatkan konduktivitas termal secara optimal. Penelitian ini menggunakan variasi konsentrasi partikel karbon berbasis tempurung kelapa sawit sebesar 0,1%, 0,3%, dan 0,5% serta konsentrasi surfaktan 0%, 10%, dan 20%. Karakterisasi nanopartikel karbon tempurung kelapa sawit menggunakan Energy Dispersive Spectroscopy (EDS) dan Field-Emission Scanning Electron Microscope (FE- SEM) untuk mengamati unsur, komposisi, serta morfologi partikel. Karakterisasi nanofluida menggunakan Particle Size Analyzer (PSA), uji Konduktivitas Termal, dan Zeta Potensial untuk mengamati ukuran partikel, konduktivitas termal nanofluida, dan stabilitas dari nanofluida dari karbon berbasis tempurung kelapa sawit.
ABSTRACT
Mechanical properties enhancement in microstructure modification has one important process called quenching. Palm kernell shell ash-based active carbon was crushed in order to reduce the carbon size. After carbon was crushed, the particle went through grinding process to reduce the size furthermore using planetary ball mill at 500 rpm for 15 hours and with Polyvinyl Alcohol addition. Polyethylene Glycol used as surfactant to reduce agglomeration between particle so that the thermal conductivity can be optimally improved. This research used variation of palm kernelll shell-based carbon concentration 0.1%, 0.3%, and 0.5% and surfactant concentration 0%, 10%, and 20%. Palm kernell shell-based carbon nanoparticle was characterized by Energy Dispersive Spectroscopy (EDS) and Field-Emission Scanning Electron Microscope (FE-SEM) to observe element, composition, and particle morphology. Nanofluids was characterized using Particle Size Abalyzer (PSA), Thermal Conductivity Test, and Zeta Potential Test to observe particle size, thermal conductivity of nanofluids, and palm oil kernell-based carbon nanofluids stability.

Depok: Fakultas Teknik Universitas Indonesia , 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library