Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Sigit Supriyadi
"ABSTRAK
Dalam analisis multivariate klasik dalam suatu uji hipotesa sering digunakan
analisis nilai eigen dalam penetuan statistik ujinya. Dibawah kondisi H0, nilai
statistik uji yang diperoleh akan digunakan untuk bentuk distribusi yang berkaitan
dengan statistik uji. Daerah kritis penolakan suatu uji uji hipotesa ditentukan
berdasarkan bentuk distribusi yang diperoleh. Nilai eigen yang diperoleh untuk
analisi multivariat ini untuk pembentukan statistik ujinya bisa menggunakan
fungsi yang melibatkan keseluruhan nilai eigen atau dengan menggunakan nilai
yang ekstrem. Untuk nilai eigen yang maksimum statistik uji yang digunakan
berdasar Roy test maksimum. Cara lain yang digunakan adalah dengan
pendekatan distribusi Tracy-Widom. Disamping daerah kritis yang diperoleh juga
dibutuhkan p-value berdasar nilai statistik uji yang sebenarnya.

ABSTRACT
Clasical multivariate analysis in test hipothesa H0 most used eigen analysis in
determined their test statistics . Under H0 test statistics which founded wiil be
used to make distribution concerning with test statistics. Critical area H0
determined their distributions. Eigenvalue which founded will be used to build
test statistics may included entilrely or eigen value maximum. Roy maximum test
had used maximum eigen value for inference by Tracy-Widom distribution.
Besides founded critical area, for also wanted p-value for their test statistics
which had found"
Depok: 2013
T44762
UI - Tesis Membership  Universitas Indonesia Library
cover
Marantika, Alfin
"ABSTRAK
Analisis Variansi adalah suatu teknik dalam statistika untuk menguji perbedaan mean lebih dari dua kelompok dengan adanya faktor yang dapat mempengaruhi perbedaan mean tersebut. Analisis variansi terdapat tiga jenis, yaitu analisis variansi satu arah, analisis variansi dua arah, dan analisis variansi multi-arah. Pada tugas akhir ini, akan dibahas mengenai analisis variansi dua arah. Pengujian statistik pada analisis variansi didasarkan oleh uji F. Dalam melakukan analisis variansi dua arah, terdapat asumsi yang harus dipenuhi, yaitu pengamatan dalam sel atau kelompok harus berdistribusi normal, pengamatan antar sel atau kelompok saling independen, dan variansi antar sel atau kelompok bersifat homogen. Masalah yang sering terjadi pada analisis variansi dua arah adalah asumsi yang tidak terpenuhi, salah satunya variansi antar sel atau kelompok bersifat heterogen. Dengan menggunakan uji F saat variansi antar sel heterogen, membuat hasil p-value tidak valid. Tugas akhir ini berisi pembahasan metode untuk mengatasi permasalahan tersebut. Metode yang digunakan, adalah bootstrap parametrik yang diperkenalkan oleh Khrisnamoorthy 2007. Dengan melakukan simulasi, metode ini menghasilkan p-value yang lebih stabil saat melakukan analisis variansi dua arah dengan variansi antar sel heterogen.

ABSTRACT
The analysis of variance is a technique in statistics to test the mean differences of more than two groups in the presence of factor that can effect the mean difference. There are three types of variance analysis, namely one way analysis of variance, two way analysis of variance, and multi way analysis of variance. In this final project, will be discussed about two way variance analysis. Statistical test on analysis of variance based on F test. In peforming analysis of variance, there are assumptions that must be fulfilled such as the observation in each cell or group must be normally distributed, observation between cells or group are mutually independent, and variance between cells or group are homogeneous. The most common problem that happened with two ways analysis of variance is unfulfilled assumptions, one of them is variance between cells or group are heterogeneous. By using the F test when the variance between cells or group are heterogenous makes the results p values is invalid. In this final project contains a method discussion to overcome the problem. The method used namely parametric bootstrap introduced by Khrisnamoorty 2007 . By performing the simulation, this method produces a more stable p value when conducting two ways analysis of variance with variance between cells or gorup are heterogeneous."
2017
S69873
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luqyana Adha Azwat
"Optimasi dosis radiasi pada perencanaan klinis menggunakan Treatment Planning System (TPS) untuk pasien radioterapi sangat penting untuk mencapai keseimbangan antara efektivitas terapi dan keselamatan pasien. Namun, proses ini memakan waktu dan sangat bergantung pada keahlian fisikawan medis. Pada penelitian ini dilakukan prediksi dosis menggunakan machine learning pada Planning Target Volume (PTV) dan Organ at Risk (OAR) untuk kasus kanker otak dengan teknik perencanaan Volumetric Modulated Arc Therapy (VMAT). Data DICOM perencanaan di ekstraksi menggunakan 3D slicer untuk mendapatkan nilai radiomic dan dosiomic yang akan digunakan pada penelitian ini dengan menggunakan model algoritma random forest. Hasil evaluasi model menunjukkan bahwa peforma model random forest dalam memprediksi dosis memiliki nilai Mean Square Error (MSE) sebesar 0,018. Nilai Homogeneity Index (HI) dan Conformity Index (CI) untuk data klinis adalah 0,136±0,134 dan 0,939±0,131 secara berturut-turut, sementara hasil prediksinya adalah 0,136±0,039 dan 0,949±0,006, dengan nilai p-value untuk fitur PTV dan OAR > 0,05. Dengan demikian, dapat disimpulkan bahwa model random forest efektif dalam memprediksi dosis untuk PTV kanker otak dan OAR, dan dapat digunakan sebagai referensi dalam proses perencanaan.

Optimizing radiation doses in clinical planning using a Treatment Planning System (TPS) for radiotherapy patients is crucial to achieving a balance between therapeutic effectiveness and patient safety. However, this process is timeconsuming and highly dependent on the expertise of medical physicists. In this study, dose prediction using machine learning for the Planning Target Volume (PTV) and Organ at Risk (OAR) in brain cancer cases was performed using the Volumetric Modulated Arc Therapy (VMAT) planning technique. DICOM planning data was extracted using 3D Slicer to obtain radiomic and dosiomic values, which were then used in this study with a random forest algorithm model. Model evaluation results showed that the random forest model's performance in predicting doses had a Mean Square Error (MSE) of 0.018. The Homogeneity Index (HI) and Conformity Index (CI) values for clinical data were 0.136±0.134 and 0.939±0.131, respectively, while the predicted results were 0.136±0.039 and 0.949±0.006, with p-values for PTV and OAR features > 0.05. Therefore, it can be concluded that the random forest model is effective in predicting doses for brain cancer PTV and OAR and can be used as a reference in the planning process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library