Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Prolessara Prasodjo
"Adsorpsi gas hidrogen dalam material berpori seperti karbon merupakan teknik penyimpanan hidrogen bertekanan yang efektif dan sangat menjanjikan untuk diaplikasikan pada sistem penyimpanan hidrogen sebagai bahan bakar terutama pada kendaraan. Nanotube karbon (NTC) merupakan salah satu material karbon yang sangat berpotensi untuk digunakan dalam penyimpanan hidrogen selain karbon aktif.
Potensi penyerapan gas hidrogen pada nanotube karbon yang dihasilkan dari produksi lokal diuji kemampuannya pada penelitian ini. Pengujiannya meliputi penentuan kapasitas adsorpsi gas hidrogen serta dinamika adsorpsi dan desorpsinya dari nanotube karbon produksi lokal pada temperatur isotermal 25 ºC dan tekanan 0-1000 Psia. Sebagai pembanding hasil percobaan, dilakukan juga uji yang sama terhadap nanotube karbon komersial yang diproduksi dari Chinese Academy of Sciences.
Dari hasil pengujian adsorpsi gas hidrogen dengan kedua NTC menunjukkan bahwa kapasitas adsorpsi hidrogen terus meningkat secara seiring dengan meningkatnya tekanan pada temperatur isotermal 25 ºC. NTC lokal mempunyai kapasitas adsorpsi yang lebih rendah dibandingkan dengan kapasitas adsorpsi NTC komersial. Pada tekanan sekitar 960 psia, kapasitas adsorpsi NTC lokal dan NTC komersial berturut-turut 0,09 % dan 0,13 % berat. Mekanisme adsorpsi yang terjadi pada kedua NTC didasarkan pada interaksi fisik. Secara umum, data adsorpsi hidrogen dari kedua adsorben dapat direpresentasikan dengan baik oleh permodelan Langmuir, dengan % AAD di bawah 5. Dari hasil data dinamika dapat diketahui bahwa proses adsorpsi dan desorpsi pada kedua NTC berlangsung sangat cepat. Pada tekanan tertinggi (960 Psia), kesetimbangan adsorpsi dan desorpsi tercapai mendekati waktu 30 detik, sedangkan pada NTC lokal tercapai pada waktu 2 detik. Waktu pencapaian kesetimbangan pada proses adsorpsi baik pada NTC lokal maupun komersial pada tekanan tinggi lebih cepat dibandingkan pada tekanan rendah. Waktu pencapaian kesetimbangan pada proses desorpsi sedikit lebih cepat pada tekanan tinggi pada NTC komersial sedangkan pada NTC komersial hampir sama pada tekanan tinggi dan rendah. Secara keseluruhan dinamika adsorpsi dan desorpsi yang terjadi pada NTC lokal dan komersial baik pada tekanan rendah sampai tekanan tinggi dapat direpresentasikan dengan baik oleh model dinamika Gasem dan Robinson dengan % AAD di bawah 2.

Adsorption of hydrogen gas in porous material such as carbon is a effective pressurized hydrogen storage technique and very promising for application in hydrogen storage system for fuel, especially in vehicles. Carbon nanotubes (CNT) is one of the most potential of carbon materials for use in hydrogen storage beside activated carbon.
Potential of hydrogen gas adsorption in carbon nanotubes generated from local production was tested in this study. The test includes the determination of hydrogen gas adsorption capacity and dynamics of adsorption and desorption of carbon nanotubes local production at isothermal temperature 25 ºC and pressure 0- 1000 Psia. As a comparison the results of the experiment, also conducted similar tests on commercially produced carbon nanotubes of the Chinese Academy of Sciences.
From the test results of hydrogen gas adsorption with both CNT show that the hydrogen adsorption capacity increased with increasing pressure at isothermal temperature of 25ºC. Local CNT has a lower adsorption capacity compared with the adsorption capacity of commercial CNT. At pressures around 960 psia, the adsorption capacity of local and commercial CNT is 0.09% and 0.13% weight respectively. Adsorption mechanism that occurs at both the CNT based on physical interactions. In general, the hydrogen adsorption data of both the adsorbent can be represented well by the Langmuir model, with % AAD of less than 5. From the data, it is known that the dynamics of adsorption and desorption processes at both the CNT happened very quickly. At highest pressure (960 Psia), adsorption and desorption equilibrium of local CNT is reached approximately in 30 seconds, while commercial CNT is reached in 2 seconds. The rate of adsorption equilibrium at both local and commercial CNT at high pressure more rapidly than at low pressures. At process of desorption, the time of equilibrium is reached slightly faster at high pressure than low pressure in the commercial CNT, but almost similar in local CNT. Overall dynamics of adsorption and desorption that occurred at both CNT at low pressure to high pressure can be presented well by the model Gasem and Robinson with % AAD below 2."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27896
UI - Tesis Open  Universitas Indonesia Library
cover
Ferriansyah Hasan
"Salah satu cara yang sangat menjanjikan dalam teknologi penyimpanan gas adalah metoda-adsorptive storage - , dimana gas tersebut disimpan dalam keadaan teradsorpsi pada suatu-adsorben - tertentu. Nanotube carbon (NTC) merupakan jenis adsorben sintesis yang memiliki kapasitas adsorpsi hidrogen sehingga dapat menjadi alternatif yang menjanjikan sebagai storage hidrogen. Penelitian ini mengembangkan storage hidrogen, yang terdiri dari beberapa tahap yaitu persiapan storage hidrogen, preparasi adsorben dan alat adsorpsi, pengukuran helium void volume, uji adsorpsi dan desorpsi hidrogen pada tekanan tinggi, serta permodelan sederhana adsorpsi Langmuir. Adsorben yang digunakan adalah NTC komersial dan lokal dalam bentuk curah dan compacted yang dilakukan pada kondisi isotermal yaitu 25_C. Uji adsorpsi tekanan tinggi dilakukan untuk setiap kondisi nanotube karbon (curah dan compacted) sampai diperoleh kurva adsorpsi isotermal dengan kenaikan tekanan 1 Mpa sampai 6 Mpa.
Hasil yang ditunjukkan oleh uji adsorpsi gas hidrogen tekanan tinggi pada kondisi isotermal (25_C), yaitu adsorpsi hidrogen dengan menggunakan variasi tiga adsorben akan meningkat kapasitas adsorpsinya seiring dengan meningkatnya tekanan. NTC lokal curah mempunyai kapasitas adsorpsi yang lebih rendah dibandingkan dengan kapasitas adsorpsi NTC komersial. Pada tekanan 600 psia, kapasitas adsorpsi NTC lokal sekitar 0,38 %, sedangkan NTC komersil curah pada tekanan yang sama daya adsorpsinya sekitar 0,6 %. Secara umum, data adsorpsi hidrogen dengan menggunakan variasi tiga adsorben dapat direpresentasikan dengan baik oleh permodelan Langmuir, dengan % deviasi NTC lokal curah sebesar 5- 6 %, dan % deviasi pada NTC komersial curah sebesar 0,004- 5. Sedangkan untuk % deviasi NTC komersial compacted sekitar 9- 13 %.

One of the most promising way in the gas storage technology is a method of "adsorptive storage", where the gas is stored in an "adsorbent". Carbon nanotubes (NTC) is a type of synthesis adsorbent which has hydrogen adsorption capacity, so that would be a promising alternative for hydrogen storage. This research consists of several stages; preparation of hydrogen storage, preparation adsorbent and adsorption equipment, measurement of Helium void volume, and also hydrogen adsorption and desorption at high pressure, as well as simple modeling Langmuir adsorption. This research using a commercial and local NTC in bulk and compacted form, which treated in an isothermal conditions of 25_C. High pressure adsorption analysis is performed for each condition of carbon nanotubes (bulk and compacted) to obtain the isothermal adsorption curve with increasing of pressure from 1 to 6 Mpa.
The results shown by high pressure adsorption of hydrogen gas at isothermal conditions (25_C) is the adsorption of hydrogen by using variations of three adsorbent, will increase the adsorption capacity with the increase of pressure. Local NTC bulk adsorption capacity is lower than the adsorption capacity of commercial NTC. At pressure of 600 psia, local NTC adsorption capacity is around 0.38%, while the bulk of commercial NTC at the same pressure is around 0.6%. In general, the hydrogen adsorption data using variations of three adsorbent could be well represented by Langmuir models, the deviation of the local NTC is about 5 to 6%, the deviation in the bulk of commercial NTC is about 0.004 to 5%, and the deviation of NTC commercial compacted is about 9 to 13%."
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51824
UI - Skripsi Open  Universitas Indonesia Library
cover
Anggi Maisarah
"Peningkatan kualitas nanotube karbon dapat dilakukan dengan menggunakan katalis berpenyangga. MgO secara luas telah digunakan sebagai penyangga katalis Fe untuk menghasilkan nanotube karbon berkualitas baik. Disisi lain, penelitian Ni berpenyangga MgO belum banyak digunakan padahal Ni merupakan logam yang paling aktif dalam reaksi dekomposisi metana. Untuk itu penelitian dilakukan untuk mengkaji perbandingan kedua katalis tersebut dalam sintesis nanotube karbon. Reaktor yang digunakan untuk reaksi dekomposisi katalitik metana adalah reaktor terstruktur Gauze, sedangkan metode yang digunakan dalam preparasi katalis adalah sol gel dan teknik pelapisan dip coating. Kinerja katalis ditentukan dari konversi metana, kemurnian hidrogen, yield dan karakterisasi nanotube karbon menggunakan SEM. Dari hasil penelitian, diperoleh perbandingan nanotube karbon yang dihasilkan yaitu katalis terstruktur Ni/MgO memberikan konversi metana rata-rata 23.5%, kemunian hidrogen rata-rata 23.9%, yield 9.76 g karbon/g katalis dan karakterisasi nanotube karbon dengan morfologi yang baik. Katalis ini juga mampu bertahan untuk reaksi selama 4.17 jam dengan konversi minimal 16.04%. Katalis terstruktur Fe/MgO memberikan konversi metana rata-rata 10.7%, kemunian hidrogen rata-rata 15.5%, yield 3.45 g karbon/g katalis dan karakterisasi nanotube karbon dengan morfologi yang kurang baik akibat terjadinya aglomerasi partikel Fe. Katalis ini hanya mampu bertahan untuk reaksi selama 2.83 jam dengan konversi minimal sebesar 7.27%.

Improvement of Carbon Nanotube (CNT) quality can be obtained by using supported catalyst. MgO has been generally used as support for Fe catalyst to produce CNT with good quality. On the other hand, there is only few research regarding the usage of MgO supported Ni catalyst despite its nature as the most reactive catalyst for catalytic methane decomposition. For that reason, this research has done to compare the two catalysts. Reactor structured Gauze is used for catalytic methane decomposition, sol gel method is used for catalyst preparation and dip coating is used for catalyst coating on substrat. Performance of the two catalysts are determined from methane conversion, hydrogen purity, yield and CNT characterization by SEM. Structured catalyst Ni/MgO gives the average conversion of 23.5%, average hydrogen purity of 23.9%, yield of 9.76 g C/g catalyst and good morfology of CNT. This catalyst can endured for 4.17 hours with the minimum conversion of 16.04%. In comparison, structured Fe/MgO catalyst gives the average conversion of 10.7%, average hydrogen purity of 15.5% and yield of 3.45 g carbon/g catalyst. Moreover, the resulting CNT morfology is not very good due to agglomeration of Fe particles. This catalyst can only endured for 2.83 hours with the minimum conversion of 7.27%."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1606
UI - Skripsi Open  Universitas Indonesia Library