Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Mohammad Arifin
Abstrak :
Pertumbuhan populasi dan pengembangan industri menyebabkan pencemaran air semakin banyak. Salah satu sumber utama pencemaran air yaitu zat pewarna organik. Metode degradasi fotokatalis merupakan solusi efektif untuk menghilangkan zat pewarna organik dalam air, salah satu contohnya ialah metode fotokatalisis dengan menggunakan semikonduktor ZnO. ZnO sebagai fotokatalis memiliki keterbatasan yaitu rekombinasi pasangan elektron-hole yang dapat menurunkan aktivitas fotokatalitik dari ZnO. Salah satu upaya untuk menekan rekombinasi yaitu membuat struktur nanokomposit ZnO dengan logam mulia Ag dan Pt yang dapat bertindak sebagai pengikat elektron. Paduan logam AgPt dengan bentuk anisotropik juga diketahui memiliki sifat fotokatalitik lebih tinggi dari bentuk isotropik logam tunggal. Pada penelitian ini dibuat fotokatalis untuk degradasi metilen biru berupa struktur nanokomposit nanorod ZnO dengan nanopartikel AgPt dengan perbandingan mol 0:1, 1:2, 1:1, dan 1:0. Nanorod ZnO yang ditumbuhkan di atas substrat kaca dengan metode hidrotermal, sedangkan nanopartikel AgPt dibuat dengan metoda reduksi yang kemudian dideposisi di atas permukaan ZnO dengan menggunakan metode drop casting. Kecepatan degradasi tertinggi dicapai oleh ZnO/Ag1Pt1 yaitu 62,29 % dibawah penyinaran UV dan 64,49% dibawah penyinaran cahaya tampak. Keberadaan nanopartikel AgPt pada permukaan ZnO mengakibatkan terjadinya transfer elektron dari ZnO ke nanopartikel AgPt sehingga nanopartikel AgPt bertindak sebagai electron sink yang dapat menghambat laju rekombinasi seperti ditunjukkan dengan penurunan drastis intensitas fotoluminisensi. Selain itu, paduan AgPt yang berbentuk nanopartikel heksagonal dengan ukuran yang lebih seragam diduga berperan dalam meningkatkan aktivitas fotokatalitiknya. ...... Population growth and industrial development cause more water pollution. One of the main sources of water pollution is organic dyes. Degradation method by using semiconductor photocatalyst is one of effective solutions for removing organic dyes in water. As a photocatalyst, ZnO has limitation, namely the high recombination rate of electron-hole pairs that can decrease the photocatalytic activity of ZnO. One of the efforts to supress the recombination rate is to develop the nanocomposite structures between ZnO with noble metals such as Ag and Pt that can act as electron sinks. Moreover, AgPt metal alloys with anisotropic form are known has higher photocatalytic activity than single metal isotropic. In this study, the photocatalysts for the degradation of methylene blue were made in the form of nanocomposite ZnO nanorods with AgPt nanoparticles with Ag/Pt mol ratio of 0:1, 1:2, 1:1, and 1:0. ZnO nanorods were grown on a glass substrate by hydrothermal method, while AgPt nanoparticles were synthesized by a reduction method and then deposited on the ZnO surface using the drop casting method. The highest degradation rate was achieved by ZnO/Ag1Pt1 up to 62.29% under UV irradiation and 64.49% under visible light irradiation. The presence of AgPt nanoparticles on the ZnO surface results in the transfer of electrons from ZnO to AgPt nanoparticles so that AgPt nanoparticles act as electron sinks that can inhibit the recombination rate as indicated by a drastic decrease in the photoluminisence intensity. Moreover, the Ag1Pt1 were formed in hexagonal particles in uniform size may also induce the higher photocatalytic activity.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53243
UI - Tesis Membership  Universitas Indonesia Library
cover
Aditya Yudiana
Abstrak :
Zinc Oxide ZnO merupakah salah satu bahan semikonduktor yang banyak diteliti sebagai fotokatalis, namun salah satu kelemahan ZnO adalah rekombinasi yang cepat antara elektron dengan hole yang mengakibatkan efisiensi aktifitas fotokatalitik rendah. Salah satu upaya untuk menekan rekombinasi ini adalah dengan membuat struktur komposit ZnO dengan nanopartikel logam mulia Au dan Ag yang dapat menangkap elektron. Pada penelitian ini dilakukan sintesis nanopartikel AuAg pada nanorod ZnO yang ditumbuhkan di atas kaca dengan metode one-pot hydrothermal. Rasio mol prekursor Au:Ag 1:0 ; 3:1 ; 1:1 ; 1:3 dan 0:1. Hasil FESEM dan TEM menunjukkan bahwa umumnya nanopartikel Au terbentuk dengan diameter 15-30 nm cukup banyak di permukaan nanorod ZnO. Dengan penambahan unsur Ag terlihat jumlah nanopartikel yang terbentuk lebih sedikit dan ukurannya menjadi lebih beragam bahkan terjadi aglomerasi. Nanopartikel AuAg yang terbentuk memiliki struktur kristal fcc dengan bidang dominan 111. ......Zinc Oxide ZnO is one of the most studied semiconductor materials as a photocatalyst, but one of the weaknesses of ZnO is rapid recombination between electrons and holes resulting in low photocatalytic activity efficiency. One attempt to suppress this recombination is to create a ZnO composite structure with noble metal nanoparticles Au and Ag that can capture electrons. In this study, the synthesis of AuAg nanoparticles on ZnO nanorods was grown on glass by one pot hydrothermal method. The mole ratio of Au precursors Ag 1 0 3 1 1 1 1 3 and 0 1. FESEM and TEM results show that generally Au nanoparticles are formed with a diameter of 15 30 nm in large number on the surface of ZnO nanorods. With the addition of Ag elements it is seen that the number of nanoparticles formed is less and the size becomes more diverse and even the agglomeration occurs. The AuAg nanoparticles formed have an face center cubic crystal structure with a dominant 111 crystal plane.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50713
UI - Tesis Membership  Universitas Indonesia Library
cover
Novita Amie Lestari
Abstrak :
Nanorod Seng oksida (ZnO) memiliki sifat optik yang menarik untuk aplikasi devais optoelektronik dan dapat disintesis dengan metode kimia sederhana dan berbiaya rendah, seperti metode hidrotermal. Dalam penelitian ini nanorod ZnO ditumbuhkan di atas substrat kaca transparan berlapis indium tin oxide (ITO) melalui dua tahap, dimana tahap pertama lapisan benih dideposisi pada substrat dengan menggunakan metode ultrasonic spray pyrolisis frekuensi 1,7 MHz dan tahap kedua yaitu penumbuhan struktur nanorod dengan metode hidrotermal. Dalam penelitian ini, benih ZnO nanorod dideposisi dengan tiga variasi waktu deposisi (10, 20, dan 30 menit) dan ditumbuhkan dengan tiga variasi konsentrasi prekursor (0,02 M, 0,06 M, dan 0,1 M) dan tiga variasi waktu tumbuh (2, 4, dan 6 jam). Karakterisasi nanorod ZnO meliputi morfologi permukaan oleh field emission scanning electron microscopy (FESEM), struktur kristal oleh difraksi sinar-x (XRD) dan sifat optik melalui pengamatan fotoluminesen (PL) dan spektroskopi UV VIS. Hasil eksperimen menunjukkan bahwa peningkatan waktu pembenihan dan peningkatan konsentrasi prekursor menghasilkan pita celah energi semakin menurun dan luminisen pada daerah cahaya tampak semakin meningkat akibat peningkatan jumlah cacat kristal. Sementara peningkatan waktu pertumbuhan menghasilkan nanorod yang tumbuhnya mengarah kepada bentuk hexagonal dengan arah yang lebih seragam pada bidang kristal (002) dengan sifat luminisensi yang hampir sama untuk semua jenis sampel. ...... Zinc oxide (ZnO) nanorods have interesting optical properties for optoelectronic device applications and it can be synthesized by simple and low cost chemical method, such as hydrothermal method. In this study, ZnO nanorods were grown on a transparent indium tin oxide (ITO) coated glass substrate through two steps, where the first step is the deposition of seed layer on the substrate using ultrasonic spray pyrolisis method with a frequency of 1.7 MHz and the second step is the growth of nanorod structure with hydrothermal method. In this study, the seed of ZnO were deposited with three variations of deposition time (10, 20, and 30 minutes) and were grown with three variations of precursor concentration (0.02 M, 0.06 M and 0.1 M) and three variations of growth time ( 2, 4, and 6 hours). The characterization of ZnO nanorod include the surface morphology by field emission scanning electron microscopy (FESEM), the crystal structure by x-ray diffraction (XRD) and the optical properties were studied through photoluminescence (PL) and UV-VIS spectroscopy. The experimental results showed that increasing seeding time and precursor concentration result in the decreasing of band gap energy and the increasing of luminesence in the visible light due to the increasing of crystal defects. While the increasing of growth time leads ZnO nanorods grow toward hexagonal shape with prefered orientation in (002) crystal planes, while the luminesence property is almost similar for all kinds samples.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T44885
UI - Tesis Membership  Universitas Indonesia Library
cover
Jeffry Marselie
Abstrak :
Material Seng Oksida ( ZnO) adalah salah satu material semikonduktor yang sedang banyak diteliti yang banyak diaplikasikan pada devais optoelektronik dan aplikasi fotokatalitik. Material ZnO dapat diubah sifatnya melalui penambahan doping. Dalam penelitian ini, nanorod ZnO disintesis dengan lima variasi doping Cu (0%, 1%, 4%, 7% dan 10%) melalui 2 tahap yaitu tahap deposisi lapisan benih di atas subtrat indium tin oxide (ITO) menggunakan metode ultrasonic spray pyrolisis dan tahap penumbuhan nanorod ZnO menggunakan metode hidrotermal. Karakterisasi nanorod ZnO meliputi morfologi permukaan oleh scanning electron microscopy (SEM), struktur kristal oleh x-ray diffraction (XRD), dan sifat optik oleh ultraviolet-visible spectroscopy (UV-Vis) dan fotoluminisen (PL). Hasil penelitian menunjukkan bahwa nanorod ZnO ditumbuhkan dengan bentuk hexagonal dan orientasi tumbuh beragam. Umumnya penambahan doping Cu menyebabkan peningkatan densitas, penurunan diameter, penurunan parameter kisi dan volume kristal nanorod ZnO. Penambahan konsentrasi doping Cu menurunkan absorbansi pada daerah panjang gelombang ultraviolet, meningkatkan nilai bandgap dan menurunkan puncak luminisensi di daerah ultra violet dan cahaya tampak. Dari hasil ini penulis menyimpulkan bahwa penambahan Cu sebesar 4 % pada struktur nanorod ZnO paling optimal untuk aplikasi devais optoelektronik dan fotokatalisis karena tingginya absorbansi di daerah ultraviolet dan rendahnya cacat yang terbentuk.
Material Zinc Oxide (ZnO) is a semiconductor material that has been researched widely for optoelectronic devices and photocatalytic applications. The characteristic ZnO material can be changed by the addition of doping. In this study, the nanorod ZnO were synthesized with five variations of doping Cu (0%, 1%, 4%, 7% and 10%) through two phases: the deposition of seed layer over a substrate of indium tin oxide (ITO) using ultrasonic spray pyrolisis and the growth of ZnO nanorod using hydrothermal method. The characterization of ZnO nanorod include surface morphology by scanning electron microscopy (SEM), the crystal structure by x-ray diffraction (XRD), and optical properties by ultraviolet-visible (UV-Vis) and photoluminisence (PL) spectroscopy. The results showed that ZnO nanorod were grown with a hexagonal shape with diverse growth orientation. Generally, the addition of Cu doping led to an increase in density, diameter reduction, a decrease in the lattice parameter and crystal volume of ZnO nanorod. The addition of Cu doping also decreases the absorbance at ultraviolet wavelength region, increasing the band gap and reducing luminesence peak in the region of ultraviolet and visible light. From these results the author concluded that the addition of 4% Cu on ZnO nanorod stucture is the most optimal for optoelectronic devices and photocatalytic applications due to the high absorbance in the ultraviolet region and the low defects are formed.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65500
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yeni Febrianti
Abstrak :
Aktifitas fotokatalis nanostruktur ZnO dapat ditingkatkan dengan berbagai cara, termasuk rekayasa struktur elektronika material melalui penambahan atau doping logam transisi. Pada umumnya ZnO doping Co untuk aplikasi fotokatalis disintesis dalam bentuk lapisan tipis atau serbuk, masih sangat sedikit penelitian sintesis nanorod ZnO doping Co yang ditumbuhkan langsung diatas substrat yang lebih praktis dalam aplikasinya. Dalam penelitian ini, nanorod ZnO ditumbuhkan diatas permukaan substrat kaca dengan metode ultrasonic spray pyrolysis dan hidrotermal. Aaktivitas fotokatalitik nanorod ZnO diuji melalui degradasi larutan methylene blue MB dibawah sinar UV. Hasil karakterisasi menggunakan FESEM, EDX, XRD, UV-Vis, DRS, PL, Raman, dan XPS menunjukkan bahwa doping Co dapat meningkatkan laju degradasi MB. Peningkatan laju degradasi akibat dari peningkatan ukuran nanorod, peningkatan absorbansi dan emisi pada daerah UV serta menurunnya band gap sebagai akibat interaksi antara elektron atom Co dengan elektron atom Zn dan O. Nanorod ZnO doping Co 7 memiliki aktivitas fotokatalitik tertinggi yang mampu mendegradasi 79,73 MB dalam waktu 38 menit.
The photocatalyst activitity of ZnO nanostructure can be enhanced in various ways, including the modification of electronic structure through the addition of transition metals elements. Generally, Co doped ZnO for photocatalyst applications were synthesized in the form of thin films or powders. It is rarely researchs on the synthesis of Co doped ZnO nanorods grown on the substrates that have more practical for photocatalyst application. In this study, ZnO nanorods were grown on the surface of glass substrates by ultrasonic spray pyrolysis and hydrothermal methods. The photocatalytic activity of ZnO nanorods was performed by degradation of methylene blue MB under UV radiation. The characterization results using FESEM, EDX, XRD, UV Vis, DRS, PL, Raman, and XPS show that Co doping can increase the degradation rates. This improvement may be due to the increase of nanorods size, the increase of UV absorbance and emissions on and decrease of band gap as a result of exchange interactions between electrons of Co with electrons of Zn and O. ZnO nanorods with doping Co 7 mol has the highest photocatalytic activity that is capable to degrade 79,73 MB within 38 minutes.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68011
UI - Skripsi Membership  Universitas Indonesia Library