Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 271 dokumen yang sesuai dengan query
cover
Mariska Halimtengker
"ABSTRAK Pada tahun belakangan ini, teknologi nano mendapat banyak perhatian karena aplikasinya yang potensial dalam kehidupan, diantaranya sebagai biosensor, chemosensor (sensor kimia), membran, katalis dan adsorben. Dalam penelitian ini, disintesis senyawa nanopartikel logam termodifikasi dengan ligan untuk diaplikasikan sebagai sensor ion logam. Pembuatan nanopartikel logam (Ag dan Au) dilakukan dengan mereduksi Ag+ dan Au3+ menggunakan zat pereduksi NaBH4. Nanopartikel Ag mempunyai ?max = 395 nm sedangkan nanopartikel Au mempunyai ?max = 508 nm. Hasil yang diamati bahwa dengan bertambahnya waktu reduksi, ?max dari nanopartikel semakin besar. Modifikasi nanopartikel Ag dengan Asam 3-merkaptopropanoat (AMP) dan sistein (sis) pada konsentrasi yang sama, dihasilkan nanopartikel Ag termodifikasi AMP (Ag@AMP) yang lebih besar jumlahnya dibandingkan nanopartikel Ag termodifikasi sis (Ag@sis). Untuk nanopartikel Au termodifikasi oleh AMP (Au@AMP) dan sistein (Au@sis) didapatkan pula Au@AMP dengan jumlah yang lebih besar dari Au@sis. Nanopartikel Au termodifkasi diamati lebih stabil dibandingkan nanopartikel Ag termodifikasi. Dalam aplikasi sebagai sensor ion logam, Ag@AMP selektif hanya untuk Pb2+ dibandingkan Cd2+, Hg2+ dan Fe3+, sedangkan Ag@sis dapat mengikat keempat ion logam tersebut. Untuk Au@AMP dan Au@sis dapat membentuk kompleks dengan Pb2+, Cd2+ dan Hg2+, tetapi tidak dengan Fe3+. Dalam proses regenerasi, Ag@AMP, Au@AMP dan Au@sis dapat diperoleh kembali, sedangkan regenerasi untuk Ag@sis didapatkan kompleks baru (Ag@sis-logam-EDTA). Kata kunci: Nanopartikel, Nanopartikel logam, Nanokoloid, Sensor kimia, Asam 3-merkaptopropanoat, Sistein, Pembentukan kompleks."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rockky
"Teknologi nano mendapat banyak pernatian karena aplikasinya yang potensial dalam kenidupan, diantaranya sebagai biosensor, chernosensor (sensor kimia), membran, katalis dan ac|sorben_ Dalam penelitian ini, disintesis senyavva nanopartikel Iogam termodifikasi dengan Iigan untuk diaplikasikan sebagai sensor ion Iogam Pembuatan nanopartikel Au dilakukan dengan Cara mereduksi Au3+ menggunakan zat pereduksi NaBH4_ Nanopartikel Au mempunyai panjang gelombang maksimum = 518 nm. Dari nasil yang diamati, dengan bertambannya vvaktu terjadi pergeseran panjang gelombang dan penurunan absorbansi, menunjukan terjadinya agregasi nanopatikel Au. Ivlodifikasi nanopartikel Au dengan ditnizone (dit) mengnasilkan nanopartikel Au termodifikasi dinizone (Au@dit). Dalam aplikasi sebagai sensor ion Iogam, Au@dit selektif nanya untuk Hg" dibandingkan Zn2+, Cd" dan Pb2+. Regenerasi kompleks Au@dit-Hg dilakukan dengan mengekstraksi ion Hg" kefasa organik_ Dalam proses regenerasi, Au@c|it dapat diperolen kembali."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Unversitas Indonesia, 2007
S30291
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andriana Fedreka Pujiastuti
2007
T39849
UI - Tesis Membership  Universitas Indonesia Library
cover
Lukmanul Hakim
"Nanoteknologi telah menjadi harapan dan tumpuan masyarakat dunia untuk menunjang teknologi masa depan. Material nanopartikel biasanya menunjukkan sifat elektrik, optik, magnetik dan kimia yang sangat unik yang tidak diperoleh pada material bulknya. Terutama besi oksida dan ferrite memperlihatkan sifat yang sangat menarik karena kepentingan teknologinya dalam nanoteknologi pada pasar informasi, agen kontras MRI, dan ferrofluida. Akan tetapi nanopartikel memiliki kecenderungan untuk saling beragregasi. Sehingga diperlukan senyawa tertentu untuk melapisinya. Dalam penelitian ini, nanopartikel besi oksida disintesis menggunakan asam oleat dan asam laurat sebagai molekul pelapis. Pembuatan nanopartikel besi oksida menggunakan metode dekomposisi termal dengan prekursor besi(III) asetilasetonat, Fe(acac)3. Garam Fe(III) terlebih dahulu direduksi oleh alkohol menjadi Fe(II) yang kemudian diikuti dengan dekomposisi pada suhu tinggi. Asam oleat dan asam laurat bertindak sebagai molekul pelapis (capping reagent) yang berfungsi untuk melapisi permukaan nanopartikel dan mencegah agregasi nanopartikel besi oksida. Spektra fourier transform infrared (FTIR) menunjukkan bahwa molekul asam oleat teradsorbsi pada permukaan nanopartikel magnetite. Analisis dengan scanning electron microscopy (SEM) menggambarkan asam oleat melapisi partikel dengan isolasi dan memiliki dispersibilitas yang baik. Pengukuran dengan particle size analyzer menghasilkan nanopartikel besi oksida dengan ukuran 23.3 nm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S30374
UI - Skripsi Open  Universitas Indonesia Library
cover
Irman Bustamam
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
T39757
UI - Tesis Membership  Universitas Indonesia Library
cover
Zhuisa Martiara Sari
"ABSTRAK
Emas (Au) merupakan salah satu logam transisi yang dapat dimanfaatkan
sebagai agen terapi, khususnya agen antikanker. Dendrimer merupakan
makromolekul yang banyak digunakan sebagai pembawa nanopartikel.
Nanopartikel emas dibuat dengan pembawa dendrimer Poliamidoamin (PAMAM)
generasi 4 (G4) pada berbagai rasio mol Au : dendrimer. Penelitian ini bertujuan
membuat nanopartikel emas dengan dendrimer PAMAM G4 (nanogold-PAMAM
G4) pada rasio mol Au : dendrimer (1 : 0,7), (1 : 0,07) dan (1 : 0,007). Nanogold-
PAMAM G4 dipisahkan dengan metode ultrasentrifugasi dengan kecepatan
50.000 rpm selama 45 menit pada suhu 4ºC. Karakterisasi fisikokimia nanogold-
PAMAM G4 dilakukan menggunakan TEM, PSA, FTIR, Spektrofotometer UVVis
dan Spektrofotometer Serapan Atom (SSA). Hasil penelitian menunjukkan
ukuran partikel nanogold-PAMAM G4 berada pada rentang 1,83 ± 0,58 - 24,53 ±
13,30 nm. Hasil karakterisasi nanogold-PAMAM G4 menunjukkan partikel
cenderung stabil (indeks polidispersitas = 0,457 dan 0,422) dan efisiensi
penjerapan dendrimer PAMAM G4 antara 51,44% - 94,15%. Nanogold-PAMAM
G4 (1 : 0,07) memberikan hasil yang paling optimal dengan efisiensi penjerapan =
94,15%.

ABSTRACT
Gold (Au) is one of transition metals that can be used as therapeutic agents,
especially anticancer agents. Dendrimer is one of the macromolecul that usually used
as nanoparticle carrier. Gold nanoparticles with dendrimer Polyamidoamine
(PAMAM) G4 carrier are made at different molar ratio of Au: Dendrimer. The aims
of the research are made a preparation of gold nanoparticles with dendrimer
PAMAM G4 (nanogold-PAMAM G4) on the molar ratio Au: dendrimer (1: 0,7), (1:
0,07) and (1: 0,007). Purification of nanogold-PAMAM G4 using ultrasentrifuge
method in 50.000 rpm during 45 minutes with temperature 4ºC. Physicochemical
characterization of nanogold-PAMAM G4 performed using TEM, PSA, FTIR, UVVis
Spectrophotometer and Atomic Absorption Spectrophotometer (AAS). The
results show that the particle size of nanogold-PAMAM G4 between 1,83 ± 0,58 -
24,53 ± 13,30 nm. The results of the characterization nanogold-PAMAM G4 show
stable particles (polydispersity index = 0.457 and 0.422) and entrapment efficiency
dendrimer PAMAM G4 of 51,44% - 94,15%. Nanogold-PAMAM G4 (1: 0,07) give
the most optimal result with entrapment efficiency = 94.15%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43349
UI - Skripsi Open  Universitas Indonesia Library
cover
Desiva Enggrit Kusumo
"Telah dilakukan sintesis nanopartikel titania melalui teknik core-shell dalam media pelarut organik. Struktur core-shell terbentuk dari hasil nukleasi-agregasi dari titania amorf dan amonium klorida akibat dari interaksi titanium klorida dan aseton yang beramonia. Baik ekstraksi pelarut maupun kalsinasi dapat menghilangkan bagian core ammonium klorida dari sistem core-shell sehingga menjadi nanopartikel kristalin berpori. Analisis termal dengan menggunakan TGA-DTA dari rute sintesis dapat mengindikasikan proses transformasi TiCl4 atau TTIP menjadi titania yang amorf dan kemudian menjadi nano kristalin, yang terjadi pada suhu 5000C. Semakin besar penggunaan rasio mol TiCl4 menyebabkan kecenderungan ukuran kristal yang semakin besar. Hasil optimasi diperoleh dari titania dengan prekursor TiCl4 yang memiliki rasio mol TiCl4:NH3 1:400. Keberadaan titania berstruktur mesoporous dikonfirmasi oleh data BET dengan diameter pori 7,199 nm, kurva adsorpsi-desorpsi gas nitrogen yang memiliki loop histerisis dan intensitas yang kuat pada pola XRD bertheta rendah pada 0,5-10, sedangkan titania berstruktur hollowsphere belum dapat dibuktikan oleh data hasil karakterisasi.

Titania nanoparticles were synthesized via core-shell technique in aqueous system. Core-shell structure is formed from nucleation-aggregation of amorfous titania and ammonium chloride due to interaction of solute and solvent. Both of solvent extraction and calcinations can release ammonium chloride core from core-shell structure, give porous nanoparticle. Thermal Gravimetry Analysis and Differential Thermal Analysis explained route of synthesis, which indicate transformation process TiCl4 or TTIP to amorfous titania and then to be nano crystal at 5000C. Increase mole ratio of TiCl4 cause increase crystallite size. Optimum result can be obtained from TiCl4 precursor at 1:400 mole ratio. Occurrence of mesoporous titania can be indicated from BET data which average pore radius of 7.199 nm, loop histerisis of adsorpsi-desorpsi curve and high intensity of low angle XRD pattern at 0.5-1 degree. Meanwhile, hollowsphere titania has not been confirmed yet."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
T29614
UI - Tesis Open  Universitas Indonesia Library
cover
Mohammad Chair Effendi
"ABSTRAK
Disertasi ini membahas modifikasi mineral trioxide aggregate (MTA) menjadi nanopartikel mineral trioksida (NMT) dan menentukan potensi NMT tersebut dengan cara menganalisis aktivitas proliferasi dan diferensiasi sel punca mesensimal pulpa gigi serta maturasi sel ke arah odontoblas. Penelitian ini adalah penelitian kuantitatif dengan desain eksperimental laboratorik Hasil penelitian menyimpulkan bahwa a) NMT meningkatkan proliferasi dan tidak toksis terhadap DPSC dan SHED; b) NMT meningkatkan aktivitas ALP khususnya pada SHED; c) NMT meningkatkan aktivitas OC khususnya pada DPSC; d) NMT meningkatkan aktivitas DSPP pada DPSC dan SHED; e) NMT meningkatkan jumlah deposit kalsium dan matrik ekstrasellular pada DPSC dan SHED.

ABSTRACT
The Dissertation discussed the modification of mineral trioxide aggregate (MTA) to nanoparticle mineral trioxidea (NMT) and determining NMT potential by analyzing the proliferation and differentiation of dental pulp stem cells and maturation activities to odontoblasts. The quantitative research used experimental laboratory design. Based on the research findings, it can be concluded that a) NMT increased cells proliferation and was not toxic to DPSC and SHED; b) NMT increased ALP activities, especially on SHED; c) NMT increased OC activities, especially on DPSC; d) NMT increased DSPP activities on DPSC and SHED; e) NMT increased the quantity of calcium deposit and extracellular matrix on DPSC and SHED."
Jakarta: 2012
D1310
UI - Disertasi Open  Universitas Indonesia Library
cover
Fatimah
"ABSTRAK
Emas (Au) merupakan logam transisi yang telah banyak dikembangkan sebagai
agen terapi dan diagnosis kanker. Au valensi +3 memiliki aktivitas toksik
terhadap sel kanker dan valensi 0 dapat digunakan untuk deteksi kanker. Au
valensi +3 dan 0 diformulasikan menjadi bentuk nanopartikel dengan pembawa
dendrimer Poliamidoamin (PAMAM) generasi 4. Nanopartikel Au0 dan Au3+
dalam dendrimer PAMAM G4 dikarakterisasi meliputi spektrum serapan, ukuran
partikel, pH serta sitotoksisitasnya secara in vitro terhadap sel kanker payudara
MCF-7 menggunakan metode MTS. Spektrum nanopartikel Au?dendrimer
PAMAM G4 sebelum dan setelah penyimpanan selama 6 minggu memberikan
serapan yang sama. Nanopartikel Au?dendrimer PAMAM G4 yang dihasilkan
berukuran 2-30 nm. Nilai IC50 nanopartikel Au?dendrimer PAMAM G4 valensi
+3 dan 0 serta dendrimer PAMAM G4 berturut-turut adalah 73,79, 131,86 dan
114,82 μM menunjukkan bahwa nanopartikel Au3+-dendrimer PAMAM bersifat
sitotoksik sedangkan nanopartikel Au0?dendrimer PAMAM G4 dan dendrimer
PAMAM G4 tidak bersifat sitotoksik terhadap sel MCF-7. Dendrimer PAMAM
G4 merupakan sistem pembawa nanopartikel dengan toksisitas yang sangat
rendah, nanopartikel Au3+-dendrimer PAMAM G4 berpotensi sebagai agen
antikanker dan nanopartikel Au0?dendrimer PAMAM G4 bersifat nonsitotoksik
sehingga dapat dikembangkan untuk diagnosis kanker.

ABSTRACT
Gold (Au) is a metal transition element which has been widely used as therapeutic
and cancer diagnostic agent. Au3+ cation is known having toxic activity against
cancer cells, while Au0 element can be used as cancer diagnostic agent. Au3+ and
Au0 nanoparticles were prepared using Polyamidoamine (PAMAM) dendrimer
generation 4. Au3+ and Au0 were characterized by UV-Vis spectra, particle size,
pH and its cytotoxicity were analyzed against MCF-7 breast cancer cells by MTS
assay. The UV-Vis spectra of Au?PAMAM dendrimer G4 before and after 6
months storage had similarity absorbances. The sizes for Au-PAMAM dendrimer
G4 nanoparticles measured by TEM and DLS methods were 2-30 nm. For its
cytotoxicity assay, the IC50 value of Au3+-PAMAM dendrimer G4, Au0-PAMAM
dendrimer G4, and PAMAM dendrimer G4 were 73.79; 131.86 and 114.82 μM,
which showed that Au3+?PAMAM dendrimer G4 was toxic while Au0?PAMAM
dendrimer G4 and PAMAM dendrimer G4 were nontoxic in MCF-7 cells.
PAMAM dendrimer G4 is a low toxicity nanoparticles template, Au3+-PAMAM
dendrimer G4 can be potential anticancer agent and Au0?PAMAM dendrimer G4
is nontoxic that can be used for cancer detection.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43844
UI - Skripsi Open  Universitas Indonesia Library
cover
Wara Dyah Pita Rengga
"Formaldehida merupakan salah satu polutan gas yang menyebabkan gangguan kesehatan sampai tingkat kanker nasofaring. Sintesis karbon aktif berbentuk serbuk dari bambu Petung dengan aditif nanopartikel perak atau tembaga digunakan sebagai penjerap polutan. Kemampuan adsorpsi formaldehida dalam sistem tumpak dan sistem sinambung digunakan untuk mendapatkan model adsorpsi formaldehida.Hasil analisis menunjukkan bahwa karbon aktif dengan aditif nanopartikel Perak mempunyai luas permukaan 683 m2/g, diameter pori rata-rata 2,7 nm (mesopori dan mikropori), ukuran nanopartikel 2-6 nm dan terdapat gugus hidroksil pada permukaan karbon.
Sifat dan kemampuan karbon aktif dengan aditif nanopartikel Perak menunjukkan hasil yang lebih baik daripada karbon aktif dengan nanopartikel Tembaga. Kemampuan adsorpsi formaldehida pada karbon aktif dengan aditif nanopartikel Perak mencapai 2,7 kali lebih tinggi daripada karbon aktifnya dengan kapasitas maksimal 150 mg/g sesuai dengan model Langmuir. Formaldehida mengalami oksidasi katalitik pada permukaan nanopartikel Perak sesuai dengan Model Langmuir Hinshelwood bimolekuler. Kurva breakthrough adsorpsi dapat dimodelkan secara tepat menggunakan Model Thomas. Hasil adsorpsi formaldehida dalam udara digunakan untuk melakukan simulasi adsorpsi dengan campuran gas lain dan memperkirakan kebutuhan jumlah karbon aktif dalam ruangan.

Formaldehyde is one of gas pollutant that cause health problems such as nasopharyngeal cancer. Synthesis of activated carbon powder from bamboo Petung with silver or copper nanoparticles additive used as pollutant adsorbents. Formaldehyde adsorption capacity in batch and continuous systems were used to obtain formaldehyde adsorption models. The analysis show that the activated carbon modified with silver nanoparticle has a surface area of 683 m2/g, an average pore diameter of 2.7 nm (mesoporous and microporous), the size of the nanoparticles is 2-6 nm and posess hydroxyl groups on its carbon surfaces.
The activated carbon modified with silver nanoparticle shows better properties and capabilities than the activated carbon modifed with nanoparticles Copper. Formaldehyde adsorption capacity of the activated carbon modified with silver nanoparticle reached 2.7 times as that of the activated carbon without, with a maximum capacity of 150 mg/g estimated from the Langmuir model. Catalytic oxidation of formaldehyde into CO2 occurs on the surface of Ag nanoparticles according to the bimolecular Langmuir Hinshelwood model. The breakthrough adsorption curves have been well represented using Thomas model. The results of formaldehide adsorption can be used to perform an adsorption simulation containing other component gas mixture and used to estimate the activated carbon needed for indoor application.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2137
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>