Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Fillia Rezki Fajri
"Industri air limbah wine menghasilkan air limbah yang memiliki karakteristik tinggi kandungan organik serta pH bersifat asam. Pengolahan konvensional dalam mengolah air limbah industri wine sangat kompleks, sehingga membutuhkan penanganan secara khusus. Saat ini, terdapat teknologi pengolahan yang sesuai dengan karakteristik air limbah wine yaitu proses oksidasi Fenton dan teknologi membran. Teknologi membran memiliki ukuran pori yang berbeda-beda, saat ini banyak pemanfaatan membran jenis nanofiltrasi dalam pengaplikasian pengolahan limbah industri. Membran nanofiltrasi memiliki kemampuan yang mirip dengan reverse osmosis yang dapat menyisihkan kandungan bahan organik serta anorganik. Proses filtrasi pada penelitian ini dilakukan secara konstan fluks dengan variasi fluks 40 LMH, 50 LMH, dan 60 LMH. Hasil penyisihan COD, besi, dan warna pada fluks 40 LMH, 50 LMH, dan 60 LMH secara berturut-turut adalah 64% ; 93%; 100%, 75%; 93% ; 100%, dan 76%; 94%; 100%. Hasil penelitian menunjukkan bahwa efisiensi penyisihan paling efektif pada fluks 60 LMH. Namun fluks 60 LMH rentan mengalami fouling yang menyebabkan permeabilitas menurun seiring berjalannya waktu. Selain itu, reversibility pada kondisi pengoperasian fluks 60 LMH didominasi oleh jenis irreversible fouling, sehingga proses mechanical backwash tidak cukup untuk mengembalikan performa membran dan membutuhkan chemical cleaning.

The wine wastewater industry produces wastewater that is characterized by high organic content and an acidic pH. Conventional processing of wine industry wastewater is very complex, so it requires special handling. Currently, there are processing technologies that suit the characteristics of wine wastewater, namely the Fenton oxidation process and membrane technology. Membrane technology has different pore sizes, currently many nanofiltration type membranes are used in industrial waste processing applications. Nanofiltration membranes have capabilities similar to reverse osmosis which can remove organic and inorganic materials. The filtration process in this study was carried out at constant flux with flux variations of 40 LMH, 50 LMH, and 60 LMH. The COD, iron and color removal results at fluxes of 40 LMH, 50 LMH and 60 LMH respectively were 64%; 93%; 100%, 75%; 93% ; 100%, and 76%; 94%; 100%. The results showed that the removal efficiency was most effective at a flux of 60 LMH. However, 60 LMH flux is susceptible to fouling which causes permeability to decrease over time. Apart from that, reversibility at 60 LMH flux operating conditions is dominated by irreversible fouling, so the mechanical backwash process is not enough to restore membrane performance and requires chemical cleaning."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ria Desiriani
"Xylitol is a sugar alcohol used as a sweetener in the food industry. Xylitol can be produced from D-xylose using a fermentation process, but it then needs to be separated from the other components of the fermentation broth (e.g., metabolic products, residual substances, biomass cells, and mineral salts), before being purified as xylitol crystals. Therefore, to obtain high purity xylitol, various separation processes are required. One very promising downstream processing method is membrane separation. This study evaluated membrane-based processes for the separation of biomass cells and other impurities, determined the concentration of xylitol produced from Debaryomyces hansenii yeast fermentation broth, and proposed a polysulfone ultrafiltration (UF) membrane for biomass-cell separation followed by polyamide nanofiltration (NF) to remove low-molecular-weight compounds (e.g., acetic acids) from sugars. The effects of operating pressure were examined using a fermentation broth model solution. The results showed that a higher pressure caused a higher permeate flux; however, the permeate flux’s rate flow decreased over time due to concentration polarization, and fouling in the UF and NF membranes. Nevertheless, at all pressures, UF achieved a 99% rejection of biomass cells. In addition, microscope analysis showed that no biomass cells were detected in the permeates of UF. The resulting NF concentrates revealed high xylitol retention and a beneficially lower concentration of acetic acids. The operating pressures of the UF test conditions were 1 barg and 1.5 barg, illustrating that, at a pressure of 5.5 barg, the experiments achieved reasonably high xylitol retention (above 90%) indicating negligible losses of sugar in the permeate port. Moreover, this was proven to be a feasible way to concentrate xylitol up to three times from the initial concentration of the model fermentation broth (MFB). Therefore, the results demonstrated that a two-stage combination of UF and NF is a promising system for the downstream processing of microbial xylitol production."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:8 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Ginting, Elza May Elizabeth
"The increasing contamination of water resources due to rapid industrialization and population growth has become a significant environmental concern. Graphene oxide (GO) membranes show promise for dye removal from wastewater, but their weak adhesion limits long-term use. To enhance membrane performance, silica (SiO2) nanoparticles were coated with polydopamine (PDA) and polyethyleneimine (PEI), forming PDA/PEI/SiO2 nanoparticles. Silica (SiO2) acts as a structural nanofiller enhancing mechanical stability, polydopamine (PDA) provides strong adhesion and cohesion through its mussel-inspired chemistry, and polyethyleneimine (PEI) contributes to amine-rich groups that increase surface charge and improve dye affinity via electrostatic interactions. These were incorporated into GO membranes using a low-pressure filtration-assisted self-assembly method. The modified membranes were tested for removing Congo Red (CR), Methyl Orange (MO), Crystal Violet (CV), and Methylene Blue (MB) using cross-flow nanofiltration. The GO1–PPS2 membrane exhibited the best performance, achieving high rejection rates: 98.68% (CR), 91.48% (MO), 86.12% (CV), and 66.03% (MB), with corresponding water permeance of 9.40, 8.64, 11.33, and 14.73 L m-2 h-1 bar-1. These results outperform pure GO membranes due to the synergistic effects of PDA/PEI/SiO2, offering enhanced dye removal and water permeability. This approach presents a viable strategy to improve GO membrane stability and performance for advanced wastewater treatment applications.

Pencemaran sumber daya air yang terus meningkat akibat industrialisasi yang pesat dan pertumbuhan populasi telah menjadi perhatian lingkungan yang serius. Membran graphene oxide (GO) menunjukkan potensi besar dalam menghilangkan zat warna dari air limbah, namun daya rekatnya yang lemah membatasi penggunaan jangka panjang. Untuk meningkatkan kinerja membran, nanopartikel silika (SiO2) dilapisi dengan polydopamine (PDA) dan polyethyleneimine (PEI), membentuk nanopartikel PDA/PEI/SiO2. Silika (SiO2) yang berperan sebagai pengisi struktural yang meningkatkan stabilitas mekanik, PDA memberikan daya rekat dan kohesi yang kuat melalui sifat kimianya yang terinspirasi dari perekat kerang, sementara PEI menyumbang gugus amina yang memperkaya muatan permukaan. Membran hasil modifikasi diuji untuk menghilangkan congo red (CR), methyl orange (MO), crystal violet (CV), dan methylene blue (MB) menggunakan sistem nanofiltrasi aliran silang. Membran GO1–PPS2 menunjukkan performa terbaik, dengan efisiensi penolakan tinggi: 98,68% (CR), 91,48% (MO), 86,12% (CV), dan 66,03% (MB), serta permeansi air masing-masing sebesar 9,40; 8,64; 11,33; dan 14,73 L m-2 h-1 bar-1. Hasil ini melampaui membran GO murni berkat efek sinergis dari PDA/PEI/SiO2 yang memberikan peningkatan signifikan. Pendekatan ini menawarkan strategi yang menjanjikan untuk meningkatkan stabilitas dan kinerja membran GO dalam aplikasi pengolahan air limbah tingkat lanjut."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Adam Zein Rusmana
"Penyediaan air bersih di Indonesia masih menghadapi tantangan, terutama di wilayah dengan kualitas air baku rendah seperti di Kawasan Industri XYZ. Penelitian ini mengkaji pengembangan desain konseptual teknologi Hollow Fiber Nanofiltration (HFNF) untuk pengolahan air gambut di Kawasan Industri XYZ, disertai analisis kelayakan finansial dan skema pendanaan berbasis Kerjasama Pemerintah dan Badan Usaha (KPBU). Hasil menunjukkan bahwa sistem HFNF dengan skema multistage feed and bleed mampu mengolah air gambut secara efisien dan memenuhi baku mutu air minum berdasarkan Permenkes No. 3 Tahun 2023. Berdasarkan pendekatan Life Cycle Cost (LCC) selama 21 tahun (2025-20450, proyek ini layak secara finansial dengan NPV sebesar Rp. 21.768.626.836, IRR sebesar 11.92%, dan payback period selama 9.8 tahun. Namun, tingginya sensitivitas terhadap risiko pembiayaan mendorong perlunya skema kolaboratif. Skema KPBU dengan proporsi pembiayaan 70% swasta dan 30% pemerintah dinilai paling optimal, dengan proyeksi IRR sebesar 17.11% dan NPV sebesar Rp. 86.099.501.207. Pendapatan dilakukan melalui kontrak bulk water supply dengan PDAM sebagai operator publik, sementara swasta fokus pada investasi dan kinerja sistem. Temuan ini menunjukkan bahwa integrasi teknologi NF dan skema KPBU dapat meningkatkan keberlanjutan layanan air bersih khususnya di Kawasan Industri XYZ.

The provision of clean and safe water in Indonesia remains a major challenge, especially in areas with poor raw water quality such as industrial zones. This study explores the conceptual design of Hollow Fiber Nanofiltration (HFNF) technology for treating peat water in the XYZ Industrial Area, along with a financial feasibility analysis and a funding scheme based on Public-Private Partnership (PPP). The results show that the HFNF system with a multistage feed and bleed configuration can efficiently treat peat water and meet the drinking water quality standards in accordance with Ministry of Health Regulation No. 3 of 2023. Using a Life Cycle Cost (LCC) approach over 21 years (2025 2045), the project is financially feasible with a Net Present Value (NPV) of IDR 21.77 billion, an Internal Rate of Return (IRR) of 11.92%, and a payback period of 9.8 years. Due to its sensitivity to financing risks, a collaborative funding model is required. The most optimal scheme is a PPP model with a cost-sharing structure: 70% of capital investment and all operational costs borne by the private sector, while the government/PDAM covers 30% of the investment and indirect operational components. This model yields an IRR of 17.11% and an NPV of IDR 86.1 billion. Revenue is generated through a bulk water supply contract with PDAM as the public operator, while the private entity focuses on investment and system performance. These findings highlight that integrating NF technology with a PPP scheme can enhance sustainable clean water services in XYZ industrial areas. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
T-pdf
UI - Tesis Membership  Universitas Indonesia Library