Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Bariqi Abdillah
"ABSTRAK
Pelacakan multi objek merupakan salah satu topik penting pada bidang ilmu komputer yang memiliki banyak aplikasi, diantaranya adalah sebagai sistem pengawasan, navigasi robot, analisis bidang olahraga, autonomous driving car, dan lain-lain. Salah satu permasalahan utama pelacakan multi objek adalah oklusi. Oklusi adalah objek yang tertutupi oleh objek lainnya. Oklusi dapat menyebabkan ID antar objek tertukar. Penelitian ini membahas oklusi pada pelacakan multi objek serta penyelesaiannya dengan Network Flow. Diberikan data deteksi objek-objek pada setiap frame-nya, tugas pelacakan multi objek adalah mengestimasi pergerakan setiap objek kemudian menghubungkan objek-objek hasil estimasi dengan objek-objek pada frame berikutnya yang bersesuaian atau yang lebih dikenal dengan asosiasi data. Pandang setiap objek pada sebuah frame sebagai node, kemudian ada edge yang menghubungkan setiap node pada frame satu dengan frame lainnya, arsitektur seperti ini pada teori graph dikenal dengan Network Flow. Kemudian cari himpunan edge yang memberikan peluang terbesar transisi dari suatu frame ke frame berikutnya, atau pada dunia optimisasi lebih dikenal dengan max-cost network flow. Edge pada kasus ini berisikan informasi seberapa besar peluang suatu node berpindah ke node pada frame setelahnya. Perhitungan peluang berdasarkan jarak posisi dan kemiripan fitur, fitur yang digunakan adalah fitur CNN. Penulis memodelkan max-cost network flow sebagai permasalahan maximum likelihood yang kemudian diselesaikan dengan algoritme Hungarian. Data yang digunakan pada penelitian ini adalah 2DMOT2015. Hasil evaluasi performa menunjukkan sistem yang dibangun memberikan akurasi 20.1% dengan ID yang tertukar sebanyak 3084 dan pemrosesan frame yang cepat, mencapai 215.8 frame/second.

ABSTRACT


Multi object tracking is one of the most important topics of computer science that has many applications, such as surveillance system, navigation robot, sports analysis, autonomous driving car, and others. One of the main problems of multi-object tracking is occlusion. Occlusion is an object that is covered by other objects. Occlusion may cause the ID between objects to be switched. This study discusses occlusion on multi-object tracking and its completion with network flow. Given objects detection on each frame, the task of multi object tracking is to estimate the movement of objects and then connect the estimation objects corresponding to the objects in the next frame or well known as the data association. Notice that each object on a frame as a node, then there is an edge connecting each node on a frame with other frames, this architecture in graph theory is known as network flow. Then find the set of edges that provide the greatest probaility of transition from one frame to the next, or to the optimization problem well known as max-cost network flow. Edge contains information on how probabiltity a node moves to the node in the frame afterwards. This probability calculation is based on position distance and similarity feature between frames, the feature used is CNN feature. We modeled max-cost network flow as the maximum likelihood problem which was then solved with the Hungarian algorithm. The data used in this research is 2DMOT2015. Performance evaluation results show that the system built gives accuracy 20.1% with the ID switch is 3084 and fast computational process on 215.8 frame/second.

"
2018
T52044
UI - Tesis Membership  Universitas Indonesia Library
cover
Aldy Raja
"Klasifikasi aksi multi-objek berdasarkan video RGB aerial merupakan tantangan kompleks yang dapat berguna untuk pengembangan sistem keamanan. Terdapat dua pendekatan jaringan saraf tiruan yang umum digunakan dalam sistem pengenal berbasis kerangka, Convolutional Neural Network (CNN) dan Graph Convolutional Network (GCN). Pendekatan CNN lebih efektif dalam mempelajari fitur spatio-temporal, lebih kuat terhadap noise dalam estimasi pose, dan dapat menangani skenario multi-objek dengan komputasi yang lebih ringan. Penelitian ini meliputi pengembangan pengenal aksi manusia dengan pendeteksi spatio-temporal berbasis kerangka menggunakan pendekatan 3D Convolutional Neural Network (3D-CNN). Pendeteksi spatio-temporal memungkinkan sistem untuk mengenali tiap-tiap aksi yang simultan dilakukan oleh multi-objek dalam satu rekaman video. Percobaan dilakukan menggunakan sejumlah pre-trained dataset dan menggunakan dataset video RGB aerial primer yang dilatih terhadap model pengenal aksi berbasis video frontal, dengan menerapkan metode transfer learning. Proses tranfer learning dilakukan dengan dataset khusus untuk menghasilkan model pelatihan yang memiliki akurasi tinggi. Pelatihan memberi keluaran berupa model jaringan saraf tiruan dengan nilai akurasinya. Pengujian dilakukan menggunakan data video untuk mengetahui ketepatan model. Dari model yang diperoleh, akan dilakukan analisis terhadap keberhasilan dan keakuratan metode dalam mengenali aksi manusia.

Multi-object action recognition based on aerial RGB video is a complex challenge that can be useful for security system development. There are two commonly used artificial neural network approaches in skeleton-based recognition systems, Convolutional Neural Network (CNN) and Graph Convolutional Network (GCN). CNN approach is more effective in learning spatio-temporal features, more robust to noise in pose estimation, and can handle multi-object scenarios with lighter computation. This research involves developing a human action recognition with skeleton-based spatio-temporal detection using a 3D Convolutional Neural Network (3D-CNN) approach. Spatio-temporal detection allows the system to recognize each simultaneous action performed by multiple objects in a single video footage. Experiments were conducted using a number of pre-trained datasets and using a primary aerial RGB video dataset trained on a frontal video-based action recognition model, by applying the transfer learning method. The transfer learning process is performed with a specific dataset to produce a high-accuracy training model. The training outputs an artificial neural network model with its accuracy value. Testing is done using video data to determine the accuracy of the model. From the model obtained, the success and accuracy of the method in recognizing human actions will be analyzed."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library