Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Radhiya Ahya Ahdika
Abstrak :
ABSTRAK
Penyakit malaria masih menjadi salah satu masalah kesehatan di dunia dikarenakan kasusnya yang meningkat hampir setiap tahun. Berdasarkan World Health Organization WHO, tahun 2016 kasus malaria di dunia meningkat dari 211 juta kasus menjadi 216 juta kasus. Penyakit menular yang disebabkan oleh parasit Plasmodium ini dapat ditularkan ke manusia melalui gigitan nyamuk Anopheles betina. Pada kondisi di lapangan, ditemukan beberapa faktor yang berpengaruh terhadap penyebaran penyakit malaria, seperti faktor pada manusia suhu tubuh dan kandungan karbon dioksida yang dikeluarkan tubuh, dan faktor tempat tinggal yang dekat dengan air tergenang. Kedua faktor di atas dipengaruhi oleh faktor lingkungan yang berubah-ubah. Pada awal skripsi, model deterministik epidemi SIR penyebaran penyakit malaria dengan intervensi kelambu dan fumigasi dibahas, beserta penentuan nilai basic reproduction number R0. Kemudian model SIR dikembangkan menjadi sistem persamaan diferensial stokastik sistem PDS untuk memahami pengaruh faktor lingkungan yang tak tentu terhadap penyebaran penyakit malaria. Sistem PDS dibentuk dengan penambahan faktor stokastik pada parameter laju infeksi. Untuk melihat pengaruh intensitas gangguan ? pada dan implikasi perubahan parameter krusial dalam R0 di sistem PDS, dilakukan simulasi numerik menggunakan metode Euler-Maruyama. Hasil simulasi numerik diantaranya menunjukkan bahwa besarnya intensitas gangguan ? menghasilkan pengaruh yang berbeda pada sistem ketika basic reproduction number R0 > 1 atau R0 < 1. Ketika R0 > 1, nilai? yang cukup besar menghasilkan solusi yang cukup berbeda dengan solusi deterministiknya, sedangkan nilai? yang cukup kecil tidak memberikan perbedaan yang signifikan. Hal yang menarik terjadi ketika R0 < 1, berapapun nilai ?, solusi stokastik selalu mendekati solusi deterministiknya.
ABSTRACT
Malaria becomes one of the world rsquo s health problems because of its increasing cases every year. Based on World Health Organization WHO, cases of malaria in the world in 2016 increased from 211 million cases to 216 million cases. This infectious diseases caused by Plasmodium parasite which can be transmitted to humans through the bite of Anopheles female mosquito. In the real condition, several factors have been found to affect the spread of malaria, such as factors in humans body temperature and carbon dioxide content released by the body, and residential factors close to stagnant water. Both factors are influenced by environmental factors that unpredictable. At the beginning of the thesis, the deterministic model of epidemic SIR spread of malaria disease with intervention of mosquito nets and fumigation will be discussed, along with the determination of the basic reproduction number R0. Then the SIR model was developed into a stochastic differential equation system SDE system to understand the effect of undue environmental factors on the spread of malaria. The SDE system is formed by the addition of a stochastic factor to the parameter of infection rate. To see the effect of noise intensity on and the implication of a crucial parameter change in R0 in the SDE system, a numerical simulation using the Euler Maruyama method is performed. Some of numerical simulation results show that the scale of the noise intensity obtain a different effect on the system when basic reproduction number R0 1 or R0 1. As R0 1, a considerable value of generates a solution quite different from its deterministic solution, whereas a small value does not make a significant difference. The interesting thing happens when R0 1, whatever the value, the stochastic solution always approaches its deterministic solution.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Mutiara Islamy
Abstrak :
Coronavirus disease 2019 (COVID-19) adalah penyakit menular yang disebabkan oleh virus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). COVID-19 dapat menular baik melalui kontak langsung dengan individu terinfeksi maupun kontak dengan permukaan benda yang mengandung virus SARS-CoV-2. Berbagai upaya telah dilakukan untuk menekan penyebaran COVID-19, salah satunya dengan melakukan vaksinasi secara massal. Pada skripsi ini dikonstruksi suatu model matematika yang merupakan pengembangan dari model SIR untuk mengetahui seberapa besar efek dari vaksinasi terhadap penyebaran COVID-19. Model yang dikonstruksi mempertimbangkan kasus tidak terdeteksi dan efek vaksinasi. Pada model ini, populasi manusia dibagi berdasarkan status kesehatannya. Model dibentuk dengan pendekatan sistem persamaaan diferensial biasa nonlinier berdimensi delapan. Dari model matematika tersebut, pada skripsi dilakukan analisis, baik secara analitik ataupun numerik, dan pemberian interpretasi. Kajian analitik yang dilakukan meliputi analisis eksistensi titik keseimbangan, pembentukkan basic reproduction number (R0), dan analisis kestabilan titik keseimbangan. Sedangkan kajian numerik yang dilakukan pada skripsi ini meliputi penaksiran parameter, analisis elastisitas dan sensitivitas R0, serta simulasi autonomous. Data yang digunakan dalam skripsi ini mengacu pada data kasus COVID-19 di DKI Jakarta sejak 13 November 2020 hingga 16 Mei 2021. ......Coronavirus disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). COVID-19 can be transmitted either through direct contact with infected individuals or not with the surface of objects that contain the SARS-CoV-2 virus. Various attempts have been made to suppress the spread of COVID-19, one of which is by mass vaccination. In this thesis, a mathematical model is constructed, which is the development of the SIR model to find out how big the effect of vaccination is against the spread of COVID-19. The constructed model considers undetected cases and the effects of vaccination. This model divides the human population based on their health status. The model is formed using an eight-dimensional nonlinear ordinary differential equation system approach. From the mathematical model, the thesis is analyzed, either analytically or numerically, and provides interpretation. The analytical studies carried out include an analysis of the existence of equilibrium point, the formation of a basic reproduction number (R0), and an analysis of the stability of the equilibrium point. While the numerical studies carried out in this thesis include parameter estimation, elasticity and sensitivity analysis of 0, and autonomous simulation. The data used in this thesis refers to data on COVID-19 cases in DKI Jakarta from November 13, 2020, to May 16, 2021.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library