Putri Mutiara Islamy
Abstrak :
Coronavirus disease 2019 (COVID-19) adalah penyakit menular yang disebabkan oleh virus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). COVID-19 dapat menular baik melalui kontak langsung dengan individu terinfeksi maupun kontak dengan permukaan benda yang mengandung virus SARS-CoV-2. Berbagai upaya telah dilakukan untuk menekan penyebaran COVID-19, salah satunya dengan melakukan vaksinasi secara massal. Pada skripsi ini dikonstruksi suatu model matematika yang merupakan pengembangan dari model SIR untuk mengetahui seberapa besar efek dari vaksinasi terhadap penyebaran COVID-19. Model yang dikonstruksi mempertimbangkan kasus tidak terdeteksi dan efek vaksinasi. Pada model ini, populasi manusia dibagi berdasarkan status kesehatannya. Model dibentuk dengan pendekatan sistem persamaaan diferensial biasa nonlinier berdimensi delapan. Dari model matematika tersebut, pada skripsi dilakukan analisis, baik secara analitik ataupun numerik, dan pemberian interpretasi. Kajian analitik yang dilakukan meliputi analisis eksistensi titik keseimbangan, pembentukkan basic reproduction number (R0), dan analisis kestabilan titik keseimbangan. Sedangkan kajian numerik yang dilakukan pada skripsi ini meliputi penaksiran parameter, analisis elastisitas dan sensitivitas R0, serta simulasi autonomous. Data yang digunakan dalam skripsi ini mengacu pada data kasus COVID-19 di DKI Jakarta sejak 13 November 2020 hingga 16 Mei 2021.
......Coronavirus disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). COVID-19 can be transmitted either through direct contact with infected individuals or not with the surface of objects that contain the SARS-CoV-2 virus. Various attempts have been made to suppress the spread of COVID-19, one of which is by mass vaccination. In this thesis, a mathematical model is constructed, which is the development of the SIR model to find out how big the effect of vaccination is against the spread of COVID-19. The constructed model considers undetected cases and the effects of vaccination. This model divides the human population based on their health status. The model is formed using an eight-dimensional nonlinear ordinary differential equation system approach. From the mathematical model, the thesis is analyzed, either analytically or numerically, and provides interpretation. The analytical studies carried out include an analysis of the existence of equilibrium point, the formation of a basic reproduction number (R0), and an analysis of the stability of the equilibrium point. While the numerical studies carried out in this thesis include parameter estimation, elasticity and sensitivity analysis of 0, and autonomous simulation. The data used in this thesis refers to data on COVID-19 cases in DKI Jakarta from November 13, 2020, to May 16, 2021.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library